PyscesToolbox Documentation
Release 1.0.0

Carl Christensen and Johann Rohwer

Aug 19, 2020

Contents

1 Introduction 3
2 Installation 5
2.1 Abbreviated reqUIrEMENtS i e e e e e e e e e e e e e e e e e e e 5
2.2 Installationon Anaconda e e e e 5
2.2.1 Virtual environments oL e e e e e e e e e 6

222 Enabling widgets e 6

2.3 Alternative: direct pip-basedinstallo 6
2.3.1 Virtual environmentsot e e e e e e e e e e e e 7

2.3.2 Enabling widgets e e e e e e e e e e e 7

2.4 MaXima ot e e e e e e e e e e e e e e e e 7
241 WINdOWS o o e 8

242 macOS Mac OS X) o o e e e e e e e e 8

243 LINUX . . . o e e e e e e e e e e e e e 8

3 Basic Usage 9
3.1 Starting a PySCeSToolbox session e 9
3.2 Downloading interactive Jupyter notebooks Lo oL 9

3.3 0 SYNAX . . . e e e e e e e e e e e e e e e e e 10
3.4 Saving and Default Directories« o v it e e e e e e e e e e 10
3.5 Plotting and Displaying Results L 11
35.1 Data2D e e 11

352 ScanFig L e 13

353 Tables L e 18

3.6 Graphic Representation of Metabolic Networks 20
3.6.1 Features e e e e e e 20

3,62 UsageExample 20

4 RateChar 25
4.1 Features. e e e e e 25
4.2 Usage and Feature Walkthrough o oo 25
421 Workflow 25

422 ObjectInstantiation it e e e e e e e e e e e e 26

423 Parameter Scan L. e e e e e 27

424 AccessingResults e 27

425 PlottingResults e 31

42,6 SaVING . . . o L e e e 33

5 Symca

5.1
52

6 Thermokin

6.1
6.2

Features L e e
Usage and feature walkthrough oo
521 Workflow . . . L e e e
5.2.2 Objectinstantiation i e e e e e e e e e e
5.2.3 Generating symbolic control coefficient expressions
5.2.4 Accessing control coefficient eXpressions e e e e e e
5.2.5 Dynamic value updating L e e e e e e e e e e
5.2.6 Control pattern graphs L e
5.277 Parameter SCANS v v v vt e
5.2.8 Fixed internal metabolites
529 Savingresults L e e e e e e e e e
5.2.10 Saving/loading SESSIONS . .+« v v v v v e
Features e e e
Usage and feature walkthrough e
6.2.1 Workflow e
6.2.2 Ratetermfile syntax L e e e e
6.2.3 Objectinstantiation i e e e e e e e e
6.2.4 Accessingresults e e e e e e e e e e e e e
6.2.5 Dynamic value updating e e e e e e e e
6.2.6 Parameter scans e e e e e e e e
6.2.7 Savingresults e e e e e e e e e e e

7 Included Files

7.1

7.2

Models
7.1.1
7.1.2

example_model.psc e e

lind_fb.psc . .

Example Notebooks . .

8 References

9 Module reference

9.1

psctb package
9.1.1 Subpackages .
9.1.2 Module contents

10 Indices and tables

Python Module Index

Index

35
35
35
35
36
36
37
39
40
43
46
48
49

51
51
52
52
52
53
54
58
59
63

65
65
65
67
68

69

71
71
71
103

105

107

109

PyscesToolbox Documentation, Release 1.0.0

Contents:

Contents 1

PyscesToolbox Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Introduction

PySCeSToolbox is a set of extensions to the original Python Simulator for Cellular Systems (PySCeS) [1]. The goals
of this software are (1) to provide metabolic model analysis tools that are beyond the scope of PySCeS and (2) to
provide a streamlined framework for using these tools together. The reader is referred to the Bioinformatics paper [2]
for further details.

Currently, PySCeSToolbox includes three main analysis tools:
1. SymCa for performing symbolic control analysis [3,4].
2. RateChar for performing generalised supply demand analysis [5,6].

3. ThermoKin for distinguishing between the thermodynamic and kinetic contributions towards reaction rates and
enzyme elasticities [7,8].

In addition to these tools PySCeSToolbox provides functionality for displaying interactive plots, tables of results, and
typeset mathematical expressions and symbols by making extensive use of the wonderful Jupyter (IPython) Notebook
platform. Therefore, in order to make the best use of its features we recommend that users run PySCeSToolbox within
the IPython Notebook environment. Regardless of being designed for interactive work through the Notebook, the core
features are completely compatible with traditional python scripting.

We recommend that users unfamiliar with PySCeS refer to its documentation before continuing here.

references.html
references.html
references.html
references.html
references.html
http://pysces.sourceforge.net/docs/userguide.html

PyscesToolbox Documentation, Release 1.0.0

4 Chapter 1. Introduction

CHAPTER 2

Installation

PySCeSToolbox is compatible with macOS, Linux, and Windows, and can be installed either with conda in an
Anaconda environment, or with pip in an existing Python environment. We have made special effort to provide
as detailed instructions as possible, assuming a clean installation of each operating system prior to installation of
PySCeSToolbox, and relatively limited knowledge of Python. If further assistance is required, please contact the
developers.

Below follow abbreviated requirements, installation instructions for conda and pip, as well as operating system-
specific instructions for setting up Maxima.

2.1 Abbreviated requirements

PySCeSToolbox has a number of requirements that must be met before installation can take place. Fortunately most
requirements, save for a few exceptions (as discussed in the operating system-specific sections), will be taken care of
automatically during installation. An abbreviated list of requirements follows:

* A Python 3.x installation (Python 3.6 or higher is recommended)
* The full SciPy Stack (see http://scipy.org/install.html).

* PySCeS (see http://pysces.sourceforge.net)

* Maxima (see http://maxima.sourceforge.net)

* Jupyter Notebook (jupyter-core version in the 4.x.x series)

2.2 Installation on Anaconda

For most users (especially those unfamiliar with Python) we recommend using the Anaconda Python distribution
(https://www.anaconda.com/products/individual#Downloads). This is a low fuss solution available for all three op-
erating systems that will install Python on you system together with many of the packages necessary for running
PySCeSToolbox. Download the appropriate Python 3.7 package from the download page (most probably the 64bit
edition) and follow the instructions of the installation wizard.

http://scipy.org/install.html
http://pysces.sourceforge.net
http://maxima.sourceforge.net
https://www.anaconda.com/products/individual#Downloads

PyscesToolbox Documentation, Release 1.0.0

2.2.1 Virtual environments

Virtual environments are a great way to keep package dependencies separate from your system files. It is highly
recommended to install PyscesToolbox into a separate environment, which first must be created (here we create an
environment called pysces). It is recommended to use a Python version >=3.6 (here we use Python 3.7). After
creation, activate the environment:

(base) $ conda create —-n pysces python=3.7
(base) $ conda activate pysces

Then install PyscesToolbox:

(pysces) $ conda install -c pysces -c sbmlteam pyscestoolbox

Be sure to specify the pysces and sbmlteam channels in the command line as above, otherwise some of the packages
won’t be found. The required Python dependencies will be installed automatically. For Maxima, refer to the operating
system-specific instructions below.

2.2.2 Enabling widgets

If you are running the Jupyter notebook for the first time, or if you have not yet enabled the notebook widgets you may
need to run the following command:

(pysces) $ Jjupyter nbextension enable —--py --sys-prefix widgetsnbextension

We also recommend running the following two commands to enable the ModelGraph functionality of PySCeSToolbox.
Rerunning these commands may be necessary when updating/reinstalling PySCeSToolbox.

(pysces) $ Jjupyter nbextension install --py —--user d3networkx_psctb
(pysces) $ jupyter nbextension enable --py —--user d3networkx_psctb

2.3 Alternative: direct pip-based install

First be sure to have Python 3 and pip installed. Pip is a useful Python package management system.

On Debian and Ubuntu-like Linux systems these can be installed with the following terminal commands:

$ sudo apt install python3
$ sudo apt install python3-pip

Other Linux distributions will also have Python 3 and pip available in their repositories.

On Windows, download Python from https://www.python.org/downloads/windows; be sure to install pip as well
when prompted by the installer, and add the Python directories to the system PATH. You can verify that the Python
paths are set up correctly by checking the pip version in a Windows Command Prompt:

> pip -V

On macOS you can install Python directly from https://www.python.org/downloads/mac-osx, or by installing Home-
brew and then installing Python 3 with Homebrew. Both come with pip available.

Note: While most Linux distributions come pre-installed with a version of Python 3, the options for Windows and
macOS detailed above are more advanced and for experienced users, who prefer fine-grained control. If you are

6 Chapter 2. Installation

basic_usage.html#graphic-representation-of-metabolic-networks
https://en.wikipedia.org/wiki/Pip_(package_manager)
https://www.python.org/downloads/windows
https://www.python.org/downloads/mac-osx
https://docs.brew.sh/Installation
https://docs.brew.sh/Installation

PyscesToolbox Documentation, Release 1.0.0

starting out, we strongly recommend using Anaconda!

2.3.1 Virtual environments

Again it is highly recommended to install PyscesToolbox into a separate virtual environment. There are several
options for setting up your working environment. We will use virtualenvwrapper, which works out of the box on
Linux and macOS. On Windows, virtualenvwrapper can be used under an MSYS environment in a native Windows
Python installation. Alternatively, you can use virtualenvwrapper-win. This will take care of managing your virtual
environments by maintaining a separate Python site-directory for you.

Install virtualenvwrapper using pip. On Linux and MacOS:

$ sudo -H pip install virtualenv
$ sudo -H pip install virtualenvwrapper

On Windows in a Python command prompt:

> pip install virtualenv
> pip install virtualenvwrapper-win

Make a new virtual environment for working with PyscesToolbox (e.g. pysces), and specify that it use Python 3 (we
used Python 3.7):

’$ mkvirtualenv -p /path/to/your/python3.7 pysces

The new virtual environment will be activated automatically, and this will be indicated in the shell prompt, e.g.:

’ (pysces) $

If you are not yet familiar with virtual environments we recommend you survey the basic commands (https:
/Ivirtualenvwrapper.readthedocs.io/en/latest/) before continuing.

The PyscesToolbox code and its dependencies can now be installed directly from PyPI into your virtual environment
using pip.

(pysces) $ pip install pyscestoolbox

As for the conda-based install, the required Python dependencies will be installed automatically. For Maxima, refer
to the operating system-specific instructions below.

2.3.2 Enabling widgets

Refer to the Anaconda-based install.

2.4 Maxima

Maxima is necessary for generating control coefficient expressions using SymCA. Below we provide operating-
specific instructions for setting up Maxima.

2.4. Maxima 7

https://virtualenvwrapper.readthedocs.io/en/latest/index.html
http://www.mingw.org/wiki/MSYS
https://pypi.org/project/virtualenvwrapper-win/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/

PyscesToolbox Documentation, Release 1.0.0

2.4.1 Windows

The latest version of Maxima can be downloaded and installed from the Windows download page at http://maxima.
sourceforge.net/download.html.

Windows might also require the path to maxima.bat to be defined in the psctb_config.ini file, found at
$USERPROFILE$\Pysces\psctb_config.ini by default, orin C: \Pysces for older PySCeS versions.

Note: As of PySCeS version 0.9.8 the default location of configuration and model files moved from C: \Pysces to
$USERPROFILES\Pysces,i.e. typically C: \Users\<username>\Pysces, to bring the Windows installation
more in line with the macOS and Linux installations. Refer to the PySCeS 0.9.8 release notes for more information.

The default path included in psctb_config.ini issetas C:\maxima?\bin\maxima.bat, where the ques-
tion marks are wildcards (since the specific path will depend on the version of Maxima). If Maxima has been installed
to a user specified directory, the correct path to the maxima .bat file must be specified here.

2.4.2 macOS (Mac OS X)

The latest version of Maxima can be downloaded and installed from the MacOS download page at http://maxima.
sourceforge.net/download.html. We recommend the VTK version of Maxima.

After downloading and installing the Maxima dmg, the following lines must be added to your .bash_profile or
. zshrc file (depending on which shell you use):

export M_PREFIX=/Applications/Maxima.app/Contents/Resources/opt

export PYTHONPATH=${M_PREFIX}/Library/Frameworks/Python.framework/Versions/2.7/1ib/
—python2.7/site-packages/: $PYTHONPATH

export MANPATH=${M_PREFIX}/share/man:$SMANPATH

export PATH=${M_PREFIX}/bin:S$PATH

alias maxima=rmaxima

2.4.3 Linux

Maxima can be installed from your repositories, if available, otherwise the latest packages can be downloaded from
the Linux link at http://maxima.sourceforge.net/download.html.

8 Chapter 2. Installation

http://maxima.sourceforge.net/download.html
http://maxima.sourceforge.net/download.html
https://github.com/PySCeS/pysces/releases/tag/0.9.8
http://maxima.sourceforge.net/download.html
http://maxima.sourceforge.net/download.html
http://maxima.sourceforge.net/download.html

CHAPTER 3

Basic Usage

This section gives a quick overview of some features and conventions that are common to all the main analysis tools.
While the main analysis tools will be briefly referenced here, later sections will cover them in full.

3.1 Starting a PySCeSToolbox session

To start a PySCeSToolbox session in a Jupyter notebook:

1. Open a terminal in the environment where you installed PyscesToolbox (i.e. Anaconda environment or other
Python environment)

2. Start up the Jupyter Notebook using the jupyter notebook command in the terminal
3. Create a new notebook by clicking the New button on the top right of the window and selecting Python 3

4. Run the following three commands in the first cell:

import pysces
import psctb
$matplotlib inline

3.2 Downloading interactive Jupyter notebooks

To facilitate learning of this software, a set of interactive Jupyter notebooks are provided that mirror the pages for
Basic Usage (this page), RateChar, Symca and Thermokin found in this documentation. They can be downloaded
from Included Files. The models and associated files should be saved in the ~/Pysces/psc folder, while the
example notebooks can go anywhere.

RateChar.html
Symca.html
Thermokin.html
included_files.html
included_files.html#models
included_files.html#example-notebooks

PyscesToolbox Documentation, Release 1.0.0

3.3 Syntax

As PySCeSToolbox was designed to work on top of PySCeS, many of its conventions are employed in this project.
The syntax (or naming scheme) for referring to model variables and parameters is the most obvious legacy. Syntax
is briefly described in the table below and relates to the provided example model (for input file syntax refer to the
PySCeS model descriptor language documentation):

Description Syntax description PySCeS Rendered LaTeX
example example

Parameters As defined in model file Keq2 Keq2

Species As defined in model file S1 S1

Reactions As defined in model file R1 R1

Steady state species “_ss” appended to model definition S1_ss Sl

Steady state reaction rates | “J_” prepended to model definition J_R1 JRr1

(Flux)

Control coefficients In the format “cclreaction_reaction” ccJR1_R2 C égl

Elasticity coefficients In the format “ecreaction_modifier” ecRI_S1 or | eff ore{f,
ecR2_Vfl1

Response coefficients In the format “rcJreaction_parameter” rcJR3_Vf{3 R{/}g

Partial response coeffi- | In the format “prclreac- | prcJR3_X2_R2 | F2RIFS

cients tion_parameter_reaction”

Control patterns CPn where n is an number assigned to a | CP4 CP4

specific control pattern

Flux contribution by spe- | In the format “J_reaction_term” J_R1_binding JR1yinding

cific term

Elasticity contribution by | In the format “pecreaction_modifier_term” | pecR1_S1_bindi nggll binding

specific term

Note: Any underscores (_) in model defined variables or parameters will be removed when rendering to LaTeX to
ensure consistency.

3.4 Saving and Default Directories

Whenever any analysis tool is used for the first time on a specific model, a directory is created within the PySCeS
output directory that corresponds to the model name. A second directory which corresponds to the analysis tool name
will be created within the first. These directories serve a dual purpose:

The fist, and most pertinent to the user, is for providing a default location for saving results. PySCeSToolbox allows
users to save results to any arbitrary location on the file system, however when no location is provided, results will be
saved to the default directory corresponding to the model name and analysis method as described above. We consider
this a fairly intuitive and convenient system that is especially useful for outputting small sets of results. Result saving
functionality is usually provided by a save_results method for each respective analysis tool. Exceptions are
RateChar where multiple types of results may be saved, each with their own method, and ScanFig where figures
are saved simply with a save method.

The second purpose is to provide a location for writing temporary files and internal data that is used to save “analysis
sessions” for later loading. In this case specifying the output destination is not supported in most cases and these
features depend on the default directory. Session saving functionality is provided only for tools that take significant
amounts of time to generate results and will always be provided by a save_session method and a corresponding
load_session method will read these results from disk.

10 Chapter 3. Basic Usage

included_files.html#example-model-psc
http://pysces.sourceforge.net/docs/inputfile_doc.html

PyscesToolbox Documentation, Release 1.0.0

Note: Depending on your OS the default PySCeS directory will be either ~/Pysces or C:\Pysces
(on Windows with PySCeS versions up to 0.9.7) or C:\Users\<username>\Pysces (on Windows
with PySCeS version 0.9.84). PySCeSToolbox will therefore create the following type of folder structure:
~/Pysces/model_name/analysis_method/ or C:\Pysces\model_name\analysis_method\ or
C:\Users\<username>\Pysces\model_name\analysis_method\ depending on your configuration.

3.5 Plotting and Displaying Results

As already mentioned previously, PySCeSToolbox includes the functionality to plot results generated by its tools.
Typically these plots will either contain results from a parameter scan where some metabolic variables are plotted
against a change in parameter, or they will contain results from a time simulation where the evolution of metabolic
variables over a certain time period are plotted.

3.5.1 Data2D

The Data2D class provides functionality for capturing raw parameter scan/simulation results and provides an interface
to the actual plotting tool ScanFig. Itis used internally by other tools in PySCeSToolbox and a Dat a2D object will
be created and returned automatically after performing a parameter scan with any of the do_par_scan methods
provided by these tools.

Features

* Access to scan/simulation results through its scan_results dictionary.
* The ability to save results in the form of a csv file using the save_results method.

* The ability to generate a ScanFig object via the plot method.

Usage example

Below is an usage example of Data2D, where results from a PySCeS parameter scan are saved to a object.

In [1]:

PySCeS model instantiation using the ‘example _model.py’ file
with name “mod’

mod = pysces.model ('example_model"')

mod. SetQuiet ()

Parameter scan setup and execution

Here we are changing the value of "Vf2' over logarithmic
scale from “loglO(1) (or 0) to logl0(100) (or 2) for a
100 points.

mod.scan_in = 'Vf2'

mod.scan_out = ['J R1','"J_R2'","J R3"]

mod.Scanl (numpy.logspace (0,2,100))

Instantiation of ‘DatalD’ object with name scan_data’
column_names = [mod.scan_in] + mod.scan_out

(continues on next page)

3.5. Plotting and Displaying Results 11

PyscesToolbox Documentation, Release 1.0.0

(continued from previous page)

scan_data = psctb.utils.plotting.Data2D (mod=mod,
column_names=column_names,
data_array=mod.scan_res)

Out[1l]:

Assuming extension is .psc

Using model directory: /home/jr/Pysces/psc
/home/jr/Pysces/psc/example_model.psc loading
Parsing file: /home/jr/Pysces/psc/example_model.psc

Calculating L matrix done.
Calculating K matrix done.

Results that can be accessed via scan_results:

In [2]:

Each key represents a field through which results can be accessed
list (scan_data.scan_results.keys())

out[2]:

["scan_in', 'scan_out', 'scan_range', 'scan_results', 'scan_points']

e.g. The first 10 data points for the scan results:

In [3]:

scan_data.scan_results.scan_results[:10, :]

Out[3]:

array ([[10.92333359, 0.97249011, 9.95084348]7,
[10.96942935, 1.01871933, 9.950710027,
[11.01771234, 1.06714226, 9.950570087,
[11.06828593, 1.1178626 , 9.9504233471,
[11.12125839, 1.17098892, 9.950269406],
[11.176743 , 1.2266349 , 9.9501081 1,
[11.23485838, 1.28491951, 9.949938871],
[11.29572869, 1.34596731, 9.94976138],
[11.35948389, 1.40990867, 9.949575221,
[11.42626002, 1.47688006, 9.9493799611)

Results can be saved using the default path as discussed in Saving and default directories with the save_results
method:

In [4]:

scan_data.save_results ()

Or they can be saved to a specified location:

In [5]:

This path leads to the Pysces root folder
data_file_name = '~/Pysces/example_mod_Vf2_scan.csv'

(continues on next page)

12 Chapter 3. Basic Usage

PyscesToolbox Documentation, Release 1.0.0

(continued from previous page)

Correct path depending on platform - necessary for platform independent scripts

if platform == 'win32' and pysces.version.current_version_tuple() < (0,9,8):
data_file_name = psctb.utils.misc.unix_to_windows_path (data_file_name)

else:

data_file_name = path.expanduser (data_file_name)

scan_data.save_results (file_name=data_file_ name)

Finally, a ScanFig object can be created using the plot method:

In [6]:

Instantiation of ‘ScanFig object with name ‘scan_figure’
scan_figure = scan_data.plot ()

3.5.2 ScanFig

The ScanFig class provides the actual plotting object. This tool allows users to display figures with results directly
in the Notebook and to control which data is displayed on the figure by use of an interactive widget based interface.
As mentioned and shown above they are created by the plot method of a Data2D object, which means that a user
never has the need to instantiate ScanFig directly.

Features

* Interactive plotting via the interact method.

* Script based plot generation where certain lines, or categories of lines (based on the type of information they
represent), can be enabled and disabled via toggle_line or toggle_category methods.

 Saving of plots with the save method.

» Customisation of figures using standard matplot1ib functionality.

Usage Example

Below is an usage example of ScanFig using the scan_figure instance created in the previous section. Here
results from the parameter scan of V£2 as generated by Scan1l is shown.

In [7]:

scan_figure.interact ()

3.5. Plotting and Displaying Results 13

PyscesToolbox Documentation, Release 1.0.0

All Fluxes/Reactions/Species
Flux Rates
Flux Rates

JR1 | JR2 | JR3

Save

S 8 &8 & 8

(=]

0 20 40 60 80 100
VI2

The Figure shown above is empty - to show lines we need to click on the buttons. First we will click on the Flux
Rates button which will allow any of the lines that fall into the category F1ux Rates to be enabled. Then we click
the other buttons:

In [8]:

The four method calls below are equivalent to clicking the category buttons
scan_figure.toggle category ('Flux Rates', True)
scan_figure.toggle category ('J _R1', True)
scan_figure.toggle _category ('J_R2', True)
scan_figure.toggle _category ('J_R3', True)

H W R HR W

scan_figure.interact ()

14 Chapter 3. Basic Usage

PyscesToolbox Documentation, Release 1.0.0

All Fluxes/Reactions/Species
Flux Rates
Flux Rates

JR1 | JR2 | JR3

Save

8 8 &8 8 3

% 20 40 60 80 100

Vi2

‘iHl ‘iHE ”IHH

Note: Certain buttons act as filters for results that fall into their category. In the case above the Flux Rates
button determines the visibility of the lines that fall into the F1ux Rates category. In essence it overwrites the state
of the buttons for the individual line categories. This feature is useful when multiple categories of results (species
concentrations, elasticities, control patterns etc.) appear on the same plot by allowing to toggle the visibility of all the
lines in a category.

We can also toggle the visibility with the toggle_line and toggle_category methods. Here
toggle_category has the exact same effect as the buttons in the above example, while toggle_1line bypasses
any category filtering. The line and category names can be accessed via 1ine_names and category_names:

In [9]:

print ('Line names : ', scan_figure.line_names)
print ('Category names : ', scan_figure.category_names)
Out[9]:

3.5. Plotting and Displaying Results 15

PyscesToolbox Documentation, Release 1.0.0

Line names : ['"J_R1', '"J_R2', '"J_R3']
Category names : ["J_R2', 'Flux Rates', 'J_R1', 'J_R3']

In the example below we set the Flux Rates visibility to False, but we set the J_R1 line visibility to True.
Finally we use the show method instead of interact to display the figure.

In [107]:

scan_figure.toggle_category('Flux Rates',False)
scan_figure.toggle_line('J_R1',True)
scan_figure.show ()

80 1

70 1

60

50 1

40 -

30 1

20

10 -

0 20 40 60 80 100

Jr1

The figure axes can also be adjusted via the ad just_figure method. Recall that the V£2 scan was performed for
a logarithmic scale rather than a linear scale. We will therefore set the x axis to log and its minimum value to 1. These
settings are applied by clicking the Apply button.

In [117]:

scan_figure.adjust_figure ()

16 Chapter 3. Basic Usage

PyscesToolbox Documentation, Release 1.0.0

X axis limits
min 1 max

Y axis limits
min 0 max

Axis scale

100

80

X _log ¥

Apply

Save

y_log

3 8 &8 3 8

10°

tI.Hl

10"
V2

10°

The underlying matplotlib objects can be accessed through the £ig and ax fields for the figure and axes, respec-
tively. This allows for manipulation of the figures using matplotlib's functionality.

In [12]:

scan_figure.
scan_figure.
scan_figure.
.show ()

scan_figure

fig.set_size_inches((6,4))
ax.set_ylabel ('Rate')
line_names

3.5. Plotting and Displaying Results

17

PyscesToolbox Documentation, Release 1.0.0

80

60 -

Rate

0 20 40 60 80 100
V2

— Jr1

Finally the plot can be saved using the save method (or equivalently by pressing the save button) without specifying
a path where the file will be saved as an svg vector image to the default directory as discussed under Saving and default
directories:

In [13]:

scan_figure.save ()

A file name together with desired extension (and image format) can also be specified:

In [14]:

This path leads to the Pysces root folder

fig_file_name = '~/Pysces/example_mod_Vf2_scan.png'

Correct path depending on platform - necessary for platform independent scripts
if platform == 'win32' and pysces.version.current_version_tuple() < (0,9,8):

fig_file_name = psctb.utils.misc.unix_to_windows_path (fig_file_name)
else:
fig _file_name = path.expanduser (fig_file_name)

scan_figure.save (file_name=fig_file_name)

3.5.3 Tables

In PySCeSToolbox, results are frequently stored in an dictionary-like structure belonging to an analysis object. In
most cases the dictionary will be named with _results appended to the type of results (e.g. Control coefficient
results in SymCa are saved as cc_results while the parametrised internal metabolite scan results of RateChar
are saved as scan_results).

18 Chapter 3. Basic Usage

PyscesToolbox Documentation, Release 1.0.0

In most cases the results stored are structured so that a single dictionary key is mapped to a single result (or result
object). In these cases simply inspecting the variable in the IPython/Jupyter Notebook displays these results in an html
style table where the variable name is displayed together with it’s value e.g. for cc_results each control coefficient
will be displayed next to its value at steady-state.

Finally, any 2D data-structure commonly used in together with PyCSeS and PySCeSToolbox can be displayed as an
html table (e.g. list of lists, NumPy arrays, SymPy matrices).

Usage Example

Below we will construct a list of lists and display it as an html table.Captions can be either plain text or contain html
tags.

In [15]:

list_of_lists = [['a','b','c"'],[1.2345,0.6789,0.00010117,[12,13,147]

In [16]:

psctb.utils.misc.html_table(list_of_lists,
caption='Example')

1.23 0.68 | 0.00
12.00 | 13.00 | 14.00

Table: Example

By default floats are all formatted according to the argument £1oat_ fmt which defaults to % . 2 £ (using the standard
Python formatter string syntax). A formatter function can be passed to as the formatter argument which allows for
more customisation.

Below we instantiate such a formatter using the formatter_factory function. Here all float values falling within
the range set up by min_val and max_val (which includes the minimum, but excludes the maximum) will be
formatted according to default_ fmt, while outliers will be formatted according to outlier_fmt.

In [17]:

formatter = psctb.utils.misc.formatter_factory(min_val=0.1,
max_val=10,
default_fmt="' !
outlier_fmt=" !

~

The constructed formatter takes a number (e.g. float, int, etc.) as argument and returns a formatter string according
to the previously setup parameters.

In [18]:

print (formatter (0.09)) # outlier

print (formatter (0.1)) # min for default

print (formatter(2)) # within range for default
print (formatter (9)) # max int for default
print (formatter (10)) # outlier

out[18]:

3.5. Plotting and Displaying Results 19

PyscesToolbox Documentation, Release 1.0.0

9.00e-02
0.1
2.0
9.0
1.00e+01

Using this formatter with the previously constructed 1ist_of 1ists lead to a differently formatted html rep-
resentation of the data:

In [19]:

psctb.utils.misc.html_table(list_of_lists,
caption='Example',
formatter=formatter, # Previously constructed formatter
first_row_headers=True) # The first row can be set as the,
—header

a b c
1.2 0.7 1.01e-04
1.20e+01 | 1.30e+01 | 1.40e+01

Table: Example

3.6 Graphic Representation of Metabolic Networks

PySCeSToolbox includes functionality for displaying interactive graph representations of metabolic networks through
the Mode1Graph tool. The main purpose of this feature is to allow for the visualisation of control patterns in SymCa.
Currently, this tool is fairly limited in terms of its capabilities and therefore does not represent a replacement for more
fully featured tools such as e.g. CellDesigner. One such limitation is that no automatic layout capabilities are included,
and nodes representing species and concentrations have to be laid out by hand. Nonetheless it is useful for quickly
visualising the structure of pathway and, as previously mentioned, for visualising the importance of various control
patterns in SymcCa.

3.6.1 Features

* Displays interactive (d3.js based) reaction networks in the notebook.

» Layouts can be saved and applied to other similar networks.

3.6.2 Usage Example

The main use case is for visualising control patterns. However, Mode 1Graph can be used in this capacity, the graph
layout has to be defined. Below we will set up the layout for the example_model.

First we load the model and instantiate a Mode 1Graph object using the model. The show method displays the graph.
In [20]:

model_graph = psctb.ModelGraph (mod)

Unless a layout has been previously defined, the species and reaction nodes will be placed randomly. Nodes are snap
to an invisible grid.

20 Chapter 3. Basic Usage

PyscesToolbox Documentation, Release 1.0.0

In [21]:

model_graph.show ()

R3

R1

X2

X0
R2

Save Layout Save Image

A layout file for the example_model is included (see link for details) and can be loaded by specifying the location
of the layout file on the disk during Mode 1Graph instantiation.

In [22]:

This path leads to the provided layout file

path_to_layout = '~/Pysces/psc/example_model_layout.dict'
Correct path depending on platform - necessary for platform independent scripts
if platform == 'win32' and pysces.version.current_version_tuple() < (0,9,8):

path_to_layout = psctb.utils.misc.unix_to_windows_path (path_to_layout)
else:

path_to_layout = path.expanduser (path_to_layout)

model_graph = psctb.ModelGraph (mod, pos_dic=path_to_layout)
model_graph.show ()

3.6. Graphic Representation of Metabolic Networks 21

included_files.html#layout-file

PyscesToolbox Documentation, Release 1.0.0

X2

S1

X3

Save Layout Save Image

Clicking the Save Layout button saves this layout to the ~/Pysces/example_model/model_graph or
C:\Pysces\example_model\model_graph directory for later use. The Save Image Button wil save an
svg image of the graph to the same location.

Now any future instantiation of a Mode 1Graph object for example_model will use the saved layout automatically.

In [23]:

model_graph = psctb.ModelGraph (mod)
model_graph.show ()

22 Chapter 3. Basic Usage

PyscesToolbox Documentation, Release 1.0.0

X2

S1

X3

Save Layout = Save Image

3.6. Graphic Representation of Metabolic Networks 23

PyscesToolbox Documentation, Release 1.0.0

24

Chapter 3. Basic Usage

CHAPTER 4

RateChar

RateChar is a tool for performing generalised supply-demand analysis (GSDA) [5.6]. This entails the generation data
needed to draw rate characteristic plots for all the variable species of metabolic model through parameter scans and
the subsequent visualisation of these data in the form of ScanFig objects.

4.1 Features

Performs parameter scans for any variable species of a metabolic model

Stores results in a structure similar to Data2D.

Saving of raw parameter scan data, together with metabolic control analysis results to disk.
Saving of RateChar sessions to disk for later use.

Generates rate characteristic plots from parameter scans (using ScanFig).

Can perform parameter scans of any variable species with outputs for relevant response, partial response, elas-
ticity and control coefficients (with data stores as Data2D objects).

4.2 Usage and Feature Walkthrough

4.2.1 Workflow

Performing GSDA with Rat eChar usually requires taking the following steps:

1.
2.

Instantiation of RateChar object (optionally specifying default settings).

Performing a configurable parameter scan of any combination of variable species (or loading previously saved
results).

Accessing scan results through RateCharData objects corresponding to the names of the scanned species
that can be found as attributes of the instantiated RateChar object.

25

references.html

PyscesToolbox Documentation, Release 1.0.0

4. Plotting results of a particular species using the plot method of the RateCharData object corresponding to
that species.

5. Further analysis using the do_mca_ scan method.
6. Session/Result saving if required.

7. Further Analysis

Note: Parameter scans are performed for a range of concentrations values between two set values. By default
the minimum and maximum scan range values are calculated relative to the steady state concentration the species for
which a scan is performed respectively using a division and multiplication factor. Minimum and maximum values may
also be explicitly specified. Furthermore the number of points for which a scan is performed may also be specified.
Details of how to access these options will be discussed below.

4.2.2 Object Instantiation

Like most tools provided in PySCeSToolbox, instantiation of a RateChar object requires a pysces model object
(PysMod) as an argument. A RateChar session will typically be initiated as follows (here we will use the included
lind_fb.psc model):

In [1]:

mod = pysces.model ('lin4d_fb.psc')
rc psctb.RateChar (mod)

Oout[1l]:

Using model directory: /home/Jjr/Pysces/psc
/home/jr/Pysces/psc/lind_fb.psc loading

Parsing file: /home/jr/Pysces/psc/lind_fb.psc

Info: "X4" has been initialised but does not occur in a rate equation

Calculating L matrix done.
Calculating K matrix done.

Default parameter scan settings relating to a specific RateChar session can also be specified during instantiation:

In [2]:

rc = psctb.RateChar (mod,min_concrange_factor=100,
max_concrange_factor=100,
scan_points=255,

auto_load=False)

* min_concrange_factor : The steady state division factor for calculating scan range minimums (default:
100).

* max_concrange_factor : The steady state multiplication factor for calculating scan range maximums
(default: 100).

e scan_points : The number of concentration sample points that will be taken during parameter scans (default:
256).

* auto_load: If True RateChar will try to load saved data from a previous session during instantiation.
Saved data is unaffected by the above options and are only subject to the settings specified during the session
where they were generated. (default: False).

26 Chapter 4. RateChar

included_files.html#lin4-fb-psc

PyscesToolbox Documentation, Release 1.0.0

The settings specified with these optional arguments take effect when the corresponding arguments are not specified
during a parameter scan.

4.2.3 Parameter Scan

After object instantiation, parameter scans may be performed for any of the variable species using the do_ratechar
method. By default do_ratechar will perform parameter scans for all variable metabolites using the settings
specified during instantiation. For saving/loading see Saving/Loading Sessions below.

In [3]:

’mod.species ‘

Out[3]:

’('51', 's2', 'sS3') ‘

In [4]:

’rc.do_ratechar()

Various optional arguments, similar to those used during object instantiation, can be used to override the default
settings and customise any parameter scan:

e fixed : A string or list of strings specifying the species for which to perform a parameter scan. The string
'all' specifies that all variable species should be scanned. (default: “‘all*)

e scan_min : The minimum value of the scan range, overrides min_concrange_factor (default: None).
* scan_max : The maximum value of the scan range, overrides max_concrange_factor (default: None).

* min_concrange_factor : The steady state division factor for calculating scan range minimums (default:
None)

* max_concrange_factor : The steady state multiplication factor for calculating scan range maximums
(default: None).

e scan_points : The number of concentration sample points that will be taken during parameter scans (default:
None).

* solver : An integer value that specifies which solver to use (0:Hybrd, 1:NLEQ,2:FINTSLV). (default: 0).

Note: For details on different solvers see the PySCeS documentation:

For example in a scenario where we only wanted to perform parameter scans of 200 points for the metabolites S1 and
S3 starting at a value of 0.02 and ending at a value 110 times their respective steady-state values the method would be
called as follows:

In [5]:

rc.do_ratechar (fixed=['S1"','S3"'], scan_min=0.02, max_concrange_factor=110, scan_
—points=200)

4.2.4 Accessing Results

4.2. Usage and Feature Walkthrough 27

RateChar.html#saving-loading-sessions
http://pysces.sourceforge.net/docs/userguide_doc.html#steady-state-analysis

PyscesToolbox Documentation, Release 1.0.0

Parameter Scan Results

Parameter scan results for any particular species are saved as an attribute of the RateChar object under the name
of that species. These RateCharData objects are similar to Data2D objects with parameter scan results being
accessible through a scan_results DotDict:

In [6]:

Each key represents a field through which results can be accessed
sorted(rc.S3.scan_results.keys())

Out[6]:

["J_R3"',
'J R4,
'ecR3_S3"',
'ecR4_53"',
'ec_data',
'ec_names',
'fixed',
'fixed_ss',
'flux_data’',
'flux_max',
'flux_min',
'flux_names',
'prcJR3_S3_R1"',
'"prcJR3_S3_R3"',
'orcJR3_S3_R4',
'prcJR4_S3_R1',
'prcJR4_S3_R3"',
'prcJR4_S3_R4',
'prc_data',
'prc_names',
'rcJR3_S3"',
'rcJR4_S3',
'rc_data',
'rc_names',
'scan_max',
'scan_min',
'scan_points',
'scan_range',
'total_demand',
'"total_supply']

Note: The DotDict data structure is essentially a dictionary with additional functionality for displaying results
in table form (when appropriate) and for accessing data using dot notation in addition the normal dictionary bracket
notation.

In the above dictionary-like structure each field can represent different types of data, the most simple of which is a
single value, e.g., scan_min and fixed, or a 1-dimensional numpy ndarray which represent input (scan_range)
or output (J_R3, J_R4, total_supply):

In [7]:

Single value results

(continues on next page)

28 Chapter 4. RateChar

PyscesToolbox Documentation, Release 1.0.0

(continued from previous page)

scan_min value
rc.S3.scan_results.scan_min

out[7]:

0.020000000000000004

In [8]:

fixed metabolite name
rc.S3.scan_results.fixed

Oout[8]:

193!’

In [9]:

l-dimensional ndarray results (only every 10th value of 200 value arrays)

scan_range values
rc.S3.scan_results.scan_range[::10]

Out [9]:

array ([2.00000000e-02, 3.42884038e-02, 5.87847316e-02, 1.00781731e-01,
1.72782234e-01, 2.96221349e-01, 5.07847861e-01, 8.70664626e-01,
1.49268501e+00, 2.55908932e+00, 4.38735439e+00, 7.52176893e+00,
1.28954725e+01, 2.21082584e+01, 3.79028445e+01, 6.49814018e+01,
1.11405427e+02, 1.90995713e+02, 3.27446907e+02, 5.61381587e+02])

In [10]:

J_R3 values for scan_range
rc.S3.scan_results.J R3[::10]

Oout [107]:

array([199.95837618, 199.95793443, 199.95717575, 199.95586349,
199.95351373, 199.94862132, 199.93277067, 199.84116362,
199.13023486, 193.32039795, 154.71345957, 58.57037566,

12.34220931, 4.95993525, 4.0627301 , 3.94870431,
3.91873852, 3.88648387, 3.83336626, 3.742480327)

In [117]:

total_supply values for scan_range
rc.S3.scan_results.total_supply[::10]

Note that J_R3 and total_supply are equal in this case, because S3
only has a single supply reaction

Out[11]:

array ([199.95837618, 199.95793443, 199.95717575, 199.95586349,
199.95351373, 199.94862132, 199.93277067, 199.84116362,

(continues on next page)

4.2. Usage and Feature Walkthrough 29

PyscesToolbox Documentation, Release 1.0.0

(continued from previous page)

199.13023486, 193.32039795, 154.71345957, 58.57037566,
12.34220931, 4.95993525, 4.0627301 , 3.94870431,
3.91873852, 3.88648387, 3.83336626, 3.742480327)

Finally data needed to draw lines relating to metabolic control analysis coefficients are also included in
scan_results. Data is supplied in 3 different forms: Lists names of the coefficients (under ec_names,
prc_names, etc.), 2-dimensional arrays with exactly 4 values (representing 2 sets of x,y coordinates) that will be
used to plot coefficient lines, and 2-dimensional array that collects coefficient line data for each coefficient type into
single arrays (under ec_data, prc_names, etc.).

In [12]:

Metabolic Control Analysis coefficient line data

Names of elasticity coefficients related to the 'S3' parameter scan
rc.S3.scan_results.ec_names

Oout[1l2]:

['ecR4_S3', 'ecR3_S3']

In [13]:

The x, y coordinates for two points that will be used to plot a
visual representation of ecR3_S3
rc.S3.scan_results.ecR3_S3

Oout[13]:

array ([[7.74368133, 166.89714925],
[8.87553568, 11.92812753]])

In [14]:

The x,y coordinates for two points that will be used to plot a
visual representation of ecR4_S3
rc.S3.scan_results.ecR4_S3

Oout[1l4]:

array ([[2.77554202, 39.660488047],
[24.76248588, 50.1953097311)

In [15]:

The ecR3_S3 and ecR4_S3 data collected into a single array
(horizontally stacked).
rc.S3.scan_results.ec_data

Out[15]:

array ([[2.77554202, 39.66048804, 7.74368133, 166.89714925]7,
[24.76248588, 50.19530973, 8.87553568, 11.928127531])

30 Chapter 4. RateChar

PyscesToolbox Documentation, Release 1.0.0

Metabolic Control Analysis Results

The in addition to being able to access the data that will be used to draw rate characteristic plots, the user also has
access to the values of the metabolic control analysis coefficient values at the steady state of any particular species via
the mca_results field. This field represents a DotDict dictionary-like object (like scan_results), however
as each key maps to exactly one result, the data can be displayed as a table (see Basic Usage):

In [16]:

Metabolic control analysis coefficient results

rc.S3.mca_results

1.000
O 4.612e-05
cyB 0.000
CiH 0.000
cy 0.000
o 1.000

el -2.888
el -19.341
el 0.108
RIRIES 12888
RS RIES T -8.920e-04
FIRIES 1°0.000
RIRIE17-.0.000
R3RIFTT-0.000
FARIIE 10.108
RIS -2.889
RII 0.108

Naturally, coefficients can also be accessed individually:

In [17]:

Control coefficient ccJR3_R1 value
rc.S3.mca_results.ccJR3_R1

Out [17]:

0.999867853018012

4.2.5 Plotting Results

One of the strengths of generalised supply-demand analysis is that it provides an intuitive visual framework for in-
specting results through the used of rate characteristic plots. Naturally this is therefore the main focus of RateChar.
Parameter scan results for any particular species can be visualised as a ScanF ig object through the plot method:

In [18]:

Rate characteristic plot for 'S3'.

S3_rate_char_plot = rc.S3.plot ()

4.2. Usage and Feature Walkthrough 31

basic_usage.html#tables

PyscesToolbox Documentation, Release 1.0.0

Plots generated by RateChar do not have widgets for each individual line; lines are enabled or disabled in batches
according to the category they belong to. By default the F1uxes, Demand and Supply categories are enabled when
plotting. To display the partial response coefficient lines together with the flux lines for J_R3, for instance, we would

click the J_R3 and the Partial Response Coefficients buttons (in addition to those that are enabled by
default).

In [19]:

Display plot via ‘interact’ and enable certain lines by clicking category buttons.

The two method calls below are equivalent to clicking the 'J_R3'

and 'Partial Response Coefficients' buttons:

S3_rate_char_plot.toggle _category('J_R3', True)
S3_rate_char_plot.toggle_category ('Partial Response Coefficients', True)

HH HH W W

S3_rate_char_plot.interact ()

Supply/Demand

Demand Supply
Reaction Blocks

J_R3 J R4 Total Demand Total Supply
Lines

Elasticity Coefficients Fluxes Partial Response Coefficients Response Coeflicients

Save

102} -

Rate

101} 1
10° ' : : :
101 10° 10t 107
[S3]
R3p JR3 R4 p JR3
— Rfm Rfm — Jr
Rl JR3
— RS‘J

Modifying the status of individual lines is still supported, but has to take place via the toggle_1line method. As an

32 Chapter 4. RateChar

PyscesToolbox Documentation, Release 1.0.0

example prcJR3_C_R4 can be disabled as follows:
In [20]:

S3_rate_char_plot.toggle_line('prcJR3_S3_R4', False)
S3_rate_char_plot.show ()

1[]2 |
3
o

1[]1 |

10° : : : :

10~1 10° 10! 107
[S3]
F3RGS FIRGY Jr3

Note: For more details on saving see the sections Saving and Default Directories and ScanFig under Basic Usage.

4.2.6 Saving
Saving/Loading Sessions

RateChar sessions can be saved for later use. This is especially useful when working with large data sets that take
some time to generate. Data sets can be saved to any arbitrary location by supplying a path:

In [21]:

This points to a file under the Pysces directory

save_file = '~/Pysces/rc_doc_example.npz'

Correct path depending on platform - necessary for platform independent scripts
if platform == 'win32' and pysces.version.current_version_tuple() < (0,9,8):

save_file
else:

psctb.utils.misc.unix_to_windows_path (save_file)

save_file

path.expanduser (save_file)

(continues on next page)

4.2. Usage and Feature Walkthrough 33

basic_usage.html#saving-and-default-directories
basic_usage.html#scanfig

PyscesToolbox Documentation, Release 1.0.0

(continued from previous page)

rc.save_session(file_name = save_file)

When no path is supplied the dataset will be saved to the default directory. (Which should be
“~/Pysces/lin4_fb/ratechar/save_data.npz” in this case.

In [22]:

rc.save_session() # to "~/Pysces/lin4 fb/ratechar/save_data.npz"

Similarly results may be loaded using the 1oad_session method, either with or without a specified path:

In [23]:

rc.load_session(save_file)

OR

rc.load_session() # from "~/Pysces/lin4 fb/ratechar/save_data.npz"

Saving Results

Results may also be exported in csv format either to a specified location or to the default directory. Unlike saving of
sessions results are spread over multiple files, so here an existing folder must be specified:

In [24]:

This points to a subdirectory under the Pysces directory

save_folder = '~/Pysces/lind_fb/'

Correct path depending on platform - necessary for platform independent scripts
if platform == 'win32' and pysces.version.current_version_tuple() < (0,9,8):

save_folder = psctb.utils.misc.unix_to_windows_path (save_folder)
else:
save_folder = path.expanduser (save_folder)

rc.save_results (save_folder)

A subdirectory will be created for each metabolite with the files ec_results_N, rc_results_N,
prc_results_N, flux_results_N and mca_summary_N (where N is a number starting at “0” which in-
crements after each save operation to prevent overwriting files).

In [25]:

Otherwise results will be saved to the default directory
rc.save_results (save_folder) # to sub folders in "~/Pysces/lin4 fb/ratechar/

Alternatively the methods save_coefficient_results, save_flux_results, save_summary and
save_all_results belonging to individual RateCharData objects can be used to save the individual result
sets.

34 Chapter 4. RateChar

CHAPTER B

Symca

Symca is used to perform symbolic metabolic control analysis [3,4] on metabolic pathway models in order to dissect
the control properties of these pathways in terms of the different chains of local effects (or control patterns) that make
up the total control coefficient values. Symbolic/algebraic expressions are generated for each control coefficient in a
pathway which can be subjected to further analysis.

5.1 Features

* Generates symbolic expressions for each control coefficient of a metabolic pathway model.
* Splits control coefficients into control patterns that indicate the contribution of different chains of local effects.
 Control coefficient and control pattern expressions can be manipulated using standard SymPy functionality.

* Values of control coefficient and control pattern values are determined automatically and updated automati-
cally following the calculation of standard (non-symbolic) control coefficient values subsequent to a parameter
alteration.

* Analysis sessions (raw expression data) can be saved to disk for later use.

* The effect of parameter scans on control coefficient and control patters can be generated and displayed using
ScanFig.

* Visualisation of control patterns by using Mode 1Graph functionality.
» Saving/loading of Symca sessions.

 Saving of control pattern results.

5.2 Usage and feature walkthrough

5.2.1 Workflow

Performing symbolic control analysis with Symca usually requires the following steps:

35

references.html

PyscesToolbox Documentation, Release 1.0.0

1. Instantiation of a Symca object using a Py SCeS model object.
2. Generation of symbolic control coefficient expressions.

3. Access generated control coefficient expression results via cc_results and the corresponding control coeffi-
cient name (see Basic Usage)

4. Inspection of control coefficient values.
5. Inspection of control pattern values and their contributions towards the total control coefficient values.

6. Inspection of the effect of parameter changes (parameter scans) on the values of control coefficients and control
patterns and the contribution of control patterns towards control coefficients.

7. Session/result saving if required

8. Further analysis.

5.2.2 Object instantiation

Instantiation of a Symca analysis object requires Py SCe S model object (PysMod) as an argument. Using the included
lin4_fb.psc model a Symca session is instantiated as follows:

In [1]:

mod = pysces.model ('lin4d fb'")
sc = psctb.Symca (mod)

Out[1]:

Assuming extension is .psc

Using model directory: /home/]jr/Pysces/psc
/home/jr/Pysces/psc/lind_fb.psc loading

Parsing file: /home/jr/Pysces/psc/lind_fb.psc

Info: "X4" has been initialised but does not occur in a rate equation

Calculating L matrix done.
Calculating K matrix done.

(hybrd) The solution converged.

Additionally Symca has the following arguments:

e internal_ fixed: This must be set to True in the case where an internal metabolite has a fixed concentra-
tion (default: “‘False**)

* auto_load: If True Symca will try to load a previously saved session. Saved data is unaffected by the
internal_fixed argument above (default: ‘‘False ‘).

Note: For the case where an internal metabolite is fixed see Fixed internal metabolites below.

5.2.3 Generating symbolic control coefficient expressions

Control coefficient expressions can be generated as soon as a Symca object has been instantiated using the do_symca
method. This process can potentially take quite some time to complete, therefore we recommend saving the generated
expressions for later loading (see Saving/Loading Sessions below). In the case of 1in4_ fb.psc expressions should
be generated within a few seconds.

36 Chapter 5. Symca

basic_usage.html#syntax
included_files.html#lin4-fb-psc
Symca.html#fixed-internal-metabolites
Symca.html#saving-loading-sessions

PyscesToolbox Documentation, Release 1.0.0

In [2]:

sc.do_symca ()

out[2]:

Simplifying matrix with 28 elements
khkkhkkkhkkhkkhkkhkkhkkhkhkhkkhkkkkkkk

do_symca has the following arguments:

e internal_ fixed: This must be set to True in the case where an internal metabolite has a fixed concentra-
tion (default: “‘False*)

* auto_save_load: If set to True Symca will attempt to load a previously saved session and only generate
new expressions in case of a failure. After generation of new results, these results will be saved instead. Setting
internal_fixed to True does not affect previously saved results that were generated with this argument
setto False (default: “‘False*).

5.2.4 Accessing control coefficient expressions

Generated results may be accessed via a dictionary-like cc_results object (see Basic Usage - Tables). Inspecting
this cc_results object in a IPython/Jupyter notebook yields a table of control coefficient values:

In [3]:

sc.cc_results

C7ET170.036
CEE | 3.090e-06
CEEY 1 1.657e-06
CEFL 1 0.964
C72 1 0.036
C{E* | 3.090e-06
C7I2 | 1.657e-06
C7E? 1 0.964
C710.036
CEE3 1 3.090e-06

C3E3] 1.657e-06
C7IB 1 0.964
CEFEY170.036
CEE* | 3.090e-06
CEFY] 1.657e-06
C7E10.964

sl 10323

sl 7-0.092
sl 120049
cel 0182

5.2. Usage and feature walkthrough 37

basic_usage.html#tables

PyscesToolbox Documentation, Release 1.0.0

C5? 10335
C32 | 2.885e-05
C%2 | -0.052
C22 | -0.284
Ce3 10334

C25 | 2.871e-05
C33 | 1.539¢-05
Cqi] -0334

> | 631.138

Inspecting an individual control coefficient yields a symbolic expression together with a value:

In [4]:

sc.cc_results.ccJR1_R4

CH = (—eBiefBely - <Bieftef)/ = = 0.964

In the above example, the expression of the control coefficient consists of two numerator terms and a common denom-
inator shared by all the control coefficient expression signified by .

Various properties of this control coefficient can be accessed such as the: * Expression (as a SymPy expression)

In [5]:

sc.cc_results.ccJR1_R4.expression

—ecRigs1ecRog0ecR353 — ecRig3ecRag1ecR3g59

——eCf%lSlecf{252661%353 +—6Cl%151ecf{25266f{453 —-60}%15160}%35286}%453 —-ecf%153661%25166l%352 +-66f%25160}f35260]%453
* Numerator expression (as a SymPy expression)

In [6]:

sc.cc_results.ccJR1_R4.numerator

—ecRis1ecRogoecR3g53 — ecRigzecRasiecR3go
* Denominator expression (as a SymPy expression)

In [7]:

sc.cc_results.ccJR1_R4.denominator

—ecRyis1ecRos0ecR3s3 + ecRig1ecRogoecRys3 — ecRig1ecR3g2ecR4s3 — ecRig3ecRog1ecR3s0 + ecRag1ecR3goecRas3
e Value (asa float64)
In [8]:

’ sc.cc_results.ccJR1_R4.value ‘

Out[8]:

’0.9640799846074221 ‘

Additional, less pertinent, attributes are abs_value, latex_expression, latex_expression_full,
latex_numerator, latex_name, name and denominator_object.

38 Chapter 5. Symca

PyscesToolbox Documentation, Release 1.0.0

The individual control coefficient numerator terms, otherwise known as control patterns, may also be accessed as
follows:

In [9]:

’sc.cc_results.chRl_R4.CPOOl

CP001 = —eB1ef2:83 /53 = 0.000

In [107]:

’sc.cc_results.chRl_R4.CPOO2

CP002 = —B1eB2: 8 /53 — 0.964

Each control pattern is numbered arbitrarily starting from 001 and has similar properties as the control coefficient
object (i.e., their expression, numerator, value etc. can also be accessed).

Control pattern percentage contribution

Additionally control patterns have a percentage field which indicates the degree to which a particular control
pattern contributes towards the overall control coefficient value:

In [117:

’sc.cc_results.chRl_R4.CPOOl.percentage

Out [11]:

’0.03087580996475991

In [12]:

’sc.cc_results.chRl_R4.CPOOZ.percentage

Out[1l2]:

’99.96912419003525

Unlike conventional percentages, however, these values are calculated as percentage contribution towards the sum of
the absolute values of all the control coefficients (rather than as the percentage of the total control coefficient value).
This is done to account for situations where control pattern values have different signs.

A particularly problematic example of where the above method is necessary, is a hypothetical control coefficient with a
value of zero, but with two control patterns with equal value but opposite signs. In this case a conventional percentage
calculation would lead to an undefined (NaN) result, whereas our methodology would indicate that each control pattern
is equally (50%) responsible for the observed control coefficient value.

5.2.5 Dynamic value updating

The values of the control coefficients and their control patterns are automatically updated when new steady-state
elasticity coefficients are calculated for the model. Thus changing a parameter of 1in4_hil1, such as the Vy value
of reaction 4, will lead to new control coefficient and control pattern values:

In [13]:

5.2. Usage and feature walkthrough 39

PyscesToolbox Documentation, Release 1.0.0

mod.reLoad ()

mod.Vf_4 has a default value of 50
mod.Vf_4 = 0.1

calculating new steady state
mod.doMca ()

Out[13]:

Parsing file: /home/Jjr/Pysces/psc/lind_fb.psc

Info: "X4" has been initialised but does not occur in a rate equation
Calculating L matrix done.

Calculating K matrix done.

(hybrd) The solution converged.

In [14]:

now ccJRI1_R4 and its two control patterns should have new values
sc.cc_results.ccJR1_R4

JR1 _ R1_R2_R3 R1_R2_R3 _
Cri~ = (—€g1€595653 — €93€51€55)/ ¥ = 1.000

In [15]:

original value was 0.000
sc.cc_results.ccJR1_R4.CP0O0O1

CP001 = —eBlef2:03 /53 = 1.000
In [16]:

original value was 0.964
sc.cc_results.ccJR1_R4.CP0O02

CP002 = —B1eB2:13 /53 = 0.000
In [17]:

resetting to default Vf_4 value and recalculating
mod.reLoad()
mod.doMca ()

out[17]:

Parsing file: /home/jr/Pysces/psc/lin4_fb.psc
Info: "X4" has been initialised but does not occur in a rate equation

Calculating L matrix done.
Calculating K matrix done.

(hybrd) The solution converged.

5.2.6 Control pattern graphs

As described under Basic Usage, Symca has the functionality to display the chains of local effects represented by con-
trol patterns on a scheme of a metabolic model. This functionality can be accessed via the highlight_patterns

40 Chapter 5. Symca

basic_usage.html#graphic-representation-of-metabolic-networks

PyscesToolbox Documentation, Release 1.0.0

method:

In [18]:

This path leads to the provided layout file

path_to_layout = '~/Pysces/psc/lind4_fb.dict'

Correct path depending on platform - necessary for platform independent scripts
if platform == 'win32' and pysces.version.current_version_tuple() < (0,9,8):

path_to_layout
else:

psctb.utils.misc.unix_to_windows_path (path_to_layout)

path_to_layout = path.expanduser (path_to_layout)

In [19]:

sc.cc_results.ccJR1_R4.highlight_patterns (height = 350, pos_dic=path_to_layout)

Control Patterns for C' _;;fl

CP0O02 CPO01

Save Layout Save Image

highlight_patterns has the following optional arguments:
* width: Sets the width of the graph (default: 900).
* height:Sets the height of the graph (default: 500).
* show_dummy_sinks: If True reactants with the “dummy” or “sink” will not be displayed (default: False).

e show_external_modifier_links: If True edges representing the interaction of external effectors with
reactions will be shown (default: False).

Clicking either of the two buttons representing the control patterns highlights these patterns according according to
their percentage contribution (as discussed above) towards the total control coefficient.

In [20]:

5.2. Usage and feature walkthrough 41

Symca.html#control-pattern-percentage-contribution

PyscesToolbox Documentation, Release 1.0.0

clicking on CP002 shows that this control pattern representing

the chain of effects passing through the feedback loop

1s totally responsible for the observed control coefficient value.
sc.cc_results.ccJR1_R4.highlight_patterns (height = 350, pos_dic=path_to_layout)

Control Patterns for C' éfl

— R1_R2_R3 —
CP002 = —eR1e B/ 5 — 0.964

CPO02 CP0O01

90 - 100
80 -89
70-79
60-69 X0 R1 S3 R4 x4
50 - 59 L a

40-49

30-39
20-29
10-19
0-9

Save Layout Save Image

In [21]:

clicking on CP001 shows that this control pattern representing

the chain of effects of the main pathway does not contribute

at all to the control coefficient value.
sc.cc_results.ccJR1_R4.highlight_patterns (height = 350, pos_dic=path_to_layout)

42 Chapter 5. Symca

PyscesToolbox Documentation, Release 1.0.0

Control Patterns for C5™

R1_R2_R3
CPO0L = —®R2:8 5 — 0.000

CPQo2 CP001

90 - 100
80 -89
70-79
60 - 69

50 - 59
40-49
30 - 39

20-29
10-19
0-9

Save Layout Save Image

5.2.7 Parameter scans

Parameter scans can be performed in order to determine the effect of a parameter change on either the control co-
efficient and control pattern values or of the effect of a parameter change on the contribution of the control patterns
towards the control coefficient (as discussed above). The procedures for both the “value” and “percentage” scans are
very much the same and rely on the same principles as described in the Basic Usage and RateChar sections.

To perform a parameter scan the do_par_scan method is called. This method has the following arguments:
* parameter: A String representing the parameter which should be varied.

* scan_range: Any iterable representing the range of values over which to vary the parameter (typically a
NumPy ndarray generated by numpy . linspace or numpy . logspace).

e scan_type: Either "percentage" or "value" as described above (default: "percentage™").

e init_return: If True the parameter value will be reset to its initial value after performing the parameter
scan (default: True).

e par_scan: If True, the parameter scan will be performed by multiple parallel processes rather than a single
process, thus speeding performance (default: False).

* par_engine: Specifies the engine to be used for the parallel scanning processes. Can either be
"multiproc" or "ipcluster". A discussion of the differences between these methods are beyond the
scope of this document, see here for a brief overview of Multiprocessing in Python. (default: "multiproc").

e force_legacy: If True do_par_scan will use a older and slower algorithm for performing the parameter
scan. This is mostly used for debugging purposes. (default: False)

Below we will perform a percentage scan of V4 for 200 points between 0.01 and 1000 in log space:

In [22]:

5.2. Usage and feature walkthrough 43

Symca.html#control-pattern-percentage-contribution
basic_usage.html#plotting-and-displaying-results
RateChar.html#plotting-results
http://www.davekuhlman.org/python_multiprocessing_01.html

PyscesToolbox Documentation, Release 1.0.0

percentage_scan_data = sc.cc_results.ccJR1_R4.do_par_scan(parameter='VEf 4",
scan_range=numpy.logspace (-
—~1,3,200),
scan_type='"percentage"')
Oout[22]:
MaxMode 1

0 min 0 sec
SCANNER: Tsteps 200

SCANNER: 200 states analysed

(hybrd) The solution converged.

As previously described, these data can be displayed using ScanFig by calling the plot method of
percentage_scan_data. Furthermore, lines can be enabled/disabled using the t oggle_category method of
ScanFig or by clicking on the appropriate buttons:

In [23]:

percentage_scan_plot = percentage_scan_data.plot ()

set the x-axis to a log scale
percentage_scan_plot.ax.semilogx ()

enable all the lines
percentage_scan_plot.toggle_category ('Control Patterns', True)
percentage_scan_plot.toggle_category ('CP001"', True)
percentage_scan_plot.toggle_category ('CP002"', True)

display the plot
percentage_scan_plot.interact ()

44 Chapter 5. Symca

PyscesToolbox Documentation, Release 1.0.0

All Coefficients
Control Patterns

Control Patterns
CP001 CP002

Save

c : : :
o
= 100+ |
3 [
=
=
S 80}]
Q
o
s
S 60}]
-
Q
[=]
c 40 1
Q
£
[1+]
2 20}]
[=
=
[
[=
J . . .

101 10° 10t 107 10°

Vf 4
CE%H2 Cj%ﬂl

A value plot can similarly be generated and displayed. In this case, however, an additional line indicating Cy will
also be present:

In [24]:
value_scan_data = sc.cc_results.ccJR1_R4.do_par_scan (parameter='Vf 4",
scan_range=numpy.logspace (-1, 3,
—200),
scan_type="value')
value_scan_plot = value_scan_data.plot ()

set the x-axis to a log scale
value_scan_plot.ax.semilogx ()

enable all the lines
value_scan_plot.toggle_category('Control Coefficients', True)
value_scan_plot.toggle_category('ccJR1_R4', True)

value_scan_plot.toggle_category('Control Patterns', True)
value_scan_plot.toggle_category ('CP001"', True)
value_scan_plot.toggle_category ('CP002"', True)

(continues on next page)

5.2. Usage and feature walkthrough 45

PyscesToolbox Documentation, Release 1.0.0

(continued from previous page)

display the plot
value_scan_plot.interact ()

All Coefficients

Control Coefficients Control Patterns
Control Coefficients

ccJR1_R4

Control Patterns
CPOO1 CPO02

Save

e © e =
~ o 00 =
T T T 1

Control coefficient/pattern value
o
[\

10° 10t 107 10°
Vf 4

'_I
o
R

v v v JJH1
C-P{I]E C-P{I]l CIM

5.2.8 Fixed internal metabolites

In the case where the concentration of an internal intermediate is fixed (such as in the case of a GSDA) the
internal_fixed argument must be set to True in either the do_symca method, or when instantiating the Symca
object. This will typically result in the creation of a cc_results_N object for each separate reaction block, where
N is a number starting at 0. Results can then be accessed via these objects as with normal free internal intermediate
models.

Thus for a variant of the 1in4_ fb model where the intermediateS 3 is fixed at its steady-state value the procedure is
as follows:

In [25]:

46 Chapter 5. Symca

PyscesToolbox Documentation, Release 1.0.0

Create a variant of mod with 'C' fixed at its steady-state value
mod_fixed_S3 = psctb.modeltools.fix_metabolite_ss (mod, 'S3'")

Instantiate Symca object the 'internal fixed' argument set to 'True'
sc_fixed _S3 = psctb.Symca (mod_fixed_ S3,internal_fixed=True)

Run the 'do_symca' method (internal_ fixed can also be set to 'True' here)
sc_fixed_S3.do_symca ()

Oout [25]:

(hybrd) The solution converged.

I hope we have a filebuffer
Seems like it

Reaction stoichiometry and rate equations
Species initial wvalues

Parameters

Assuming extension is .psc

Using model directory: /home/jr/Pysces/psc

Using file: 1lin4_fb_S3.psc
/home/jr/Pysces/psc/orca/lin4_fb_S3.psc loading
Parsing file: /home/jr/Pysces/psc/orca/lind_fb_S3.psc

Info: "X4" has been initialised but does not occur in a rate equation
Calculating L matrix done.
Calculating K matrix done.

(hybrd) The solution converged.
Simplifying matrix with 24 elements
kkkkkhkhkhkhkhkhkhkhkhkkkkkkk

The normal sc_fixed_S3.cc_results object is still generated, but will be invalid for the fixed model. Each
additional cc_results_N contains control coefficient expressions that have the same common denominator and
corresponds to a specific reaction block. These cc_results_N objects are numbered arbitrarily, but consistantly
accross different sessions. Each results object accessed and utilised in the same way as the normal cc_results
object.

For the mod_ fixed_c model two additional results objects (cc_results_0and cc_results_1) are generated:

e cc_results_1 contains the control coefficients describing the sensitivity of flux and concentrations within
the supply block of S3 towards reactions within the supply block.

In [26]:

sc_fixed_S3.cc_results_1

5.2. Usage and feature walkthrough 47

PyscesToolbox Documentation, Release 1.0.0

C7ET171.000
CF 1 8.603e-05
CF] 4.612e-05
C{R2 1 1.000
C3F?] 8.603e-05
CEE? | 4.612e-05
C7 1 1.000
C{E3 1 8.603e-05
C7IB | 4.612e-05

Czl] 0.141
C3s | -0.092
C3t] -0.049
C37 | 0.052
C73 | 4.446e-06
C3% | -0.052

by 210.616

* cc_results_0 contains the control coefficients describing the sensitivity of flux and concentrations of either
reaction block towards reactions in the other reaction block (i.e., all control coefficients here should be zero).
Due to the fact that the S3 demand block consists of a single reaction, this object also contains the control
coefficient of R4 on J_R4, which is equal to one. This results object is useful confirming that the results were
generated as expected.

In [27]:

sc_fixed_S3.cc_results_ 0

CZFT T 0.000
C7i# 1 0.000
CEE3 1 0.000
C7E10.000
CEEY 1 0.000
C7E10.000
CLFY 1 1.000

Cgy] 0.000
C3%] 0.000
) 1.000

If the demand block of S3 in this pathway consisted of multiple reactions, rather than a single reaction, there would
have been an additional cc_results_N object containing the control coefficients of that reaction block.

5.2.9 Saving results

In addition to being able to save parameter scan results (as previously described), a summary of the control coefficient
and control pattern results can be saved using the save_results method. This saves a csv file (by default) to
disk to any specified location. If no location is specified, a file named cc_summary_N is saved to the ~/Pysces/
$modelname/symca/ directory, where N is a number starting at 0:

In [28]:

48 Chapter 5. Symca

PyscesToolbox Documentation, Release 1.0.0

sc.save_results ()

save_results has the following optional arguments:
* file_ name: Specifies a path to save the results to. If None, the path defaults as described above.
* separator: The separator between fields (default: ", ")

The contents of the saved data file is as follows:

In [29]:

the following code requires "pandas’ to run
import pandas as pd
load csv file at default path

results_path = '~/Pysces/1lind4_fb/symca/cc_summary_0.csv'
Correct path depending on platform - necessary for platform independent scripts
if platform == 'win32' and pysces.version.current_version_tuple() < (0,9,8):

results_path = psctb.utils.misc.unix_to_windows_path (results_path)
else:
results_path = path.expanduser (results_path)

saved_results = pd.read_csv(results_path)
show first 20 lines
saved_results.head (n=20)

5.2.10 Saving/loading sessions

Saving and loading Symca sessions is very simple and works similar to RateChar. Saving a session takes place
with the save_session method, whereas the 1oad_session method loads the saved expressions. As with the
save_results method and most other saving and loading functionality, if no £ile_name argument is provided,
files will be saved to the default directory (see also Basic Usage). As previously described, expressions can also
automatically be loaded/saved by do_symca by using the auto_save_load argument which saves and loads
using the default path. Models with internal fixed metabolites are handled automatically.

In [30]:

saving session
sc.save_session ()

create new Symca object and load saved results
new_sc = psctb.Symca (mod)
new_sc.load_session ()

display saved results
new_sc.cc_results

Oout [307]:

(hybrd) The solution converged.

5.2. Usage and feature walkthrough 49

basic_usage.html#saving-and-default-directories

PyscesToolbox Documentation, Release 1.0.0

C7ET170.036
CEE | 3.090e-06
CEEY 1 1.657e-06
CF10.964
C7RZ170.036
C{E* | 3.090e-06
C72 | 1.657e-06
C7E 1 0.964
C710.036
CEE3] 3.090e-06
C7E3] 1.657e-06
C7IB 1 0.964
C7EY170.036
C75 1 3.090e-06
CEFY] 1.657e-06
C7F* 1 0.964
Cyt 10323
C%% -0.092
Cpi 1-0.049
cgl 1-0182
C33 10335
C32 | 2.885e-05
Cég -0.052
Cp3 | -0.284
C73 10334
C7s | 2.871e-05
C33 | 1.539¢-05
53
Ce3] -0334
> 631.138

50

Chapter 5. Symca

CHAPTER O

Thermokin

Thermokin is used to assess the kinetic and thermodynamic aspects of enzyme catalysed reactions in metabolic path-
ways [7,8]. It provides the functionality to automatically separate the rate equations of reversible reactions into a
mass-action (V) term and a combined binding (ve) and rate capacity (v.qp) term, however rate equations may be
manually split into any arbitrary terms if more granularity is required. Additionally I'/ K, is calculated automatically
for reversible reactions. Subsequently, elasticity coefficients for the different rate equation terms are automatically
calculated. Similar to symbolic control coefficient and control pattern expressions of Symca, the term and elasticity
expressions generated by Thermokin can be inspected and manipulated with standard SymPy functionality and their
values are automatically recalculated upon a steady-state recalculation.

Note: Here we use the word “term” to refer to the terms of the logarithmic form of a rate equation as well as to
the corresponding factors of its linear (conventional) form. While not technically correct, this terminology is used in
accordance to the original publication [8].

6.1 Features

* Automatically separates rate equations into a mass-action term and a combined binding and rate capacity terms.
» Allows for splitting rate equations into arbitrary terms.

* Determines a I'/ K., expression for reversible reactions.

* Determines elasticity coefficient expressions for each reaction and its associated terms.

* Calculates values of for reaction rate terms, I'/ K4, and elasticity coefficients when a new steady-state is
reached.

* The effect of a parameter change on the reaction rate terms, I'/ K4, and elasticity coefficients can be investigated
by performing a parameter scan and visualised usig ScanFig.

* Loading of split rate equation terms

 Saving of Thermokin results

51

references.html
Symca.html
references.html

PyscesToolbox Documentation, Release 1.0.0

6.2 Usage and feature walkthrough

6.2.1 Workflow

Assessing the kinetic and thermodynamic aspects of enzyme catalysed reactions using Thermokin requires the
following steps:

1. Instantiation of a Thermokin object using a PySCeS model object and (optionally) a file in which the rate
equations of the model has been split into separate terms.

2. Accessing rate equation terms via reaction_results and the corresponding reaction name, reaction term
name, or I'/ K., name.

Accessing elasticity coefficient terms via ec_results and the corresponding elasticity coefficient name.
Inspection of the values of the various terms and elasticity coefficients.
Inspection of the effect of parameter changes on the values of the rate equation terms and elasticity coefficients.

Result saving.

N AW

Further analysis.

6.2.2 Rate term file syntax

As previously mentioned, Thermokin will attempt to automatically split the rate equations of reversible reactions
into separate terms. While this feature should work for most common rate equations and does not require any user
intervention or knowledge of the parameter names used in the model file, it is limited in two significant ways:

1. The algorithm cannot distinguish between the binding and rate capacity terms and can therefore not separate
them. This is a minor issue if the focus of the analysis will be on the elasticity coefficients of the different terms,
as the combined rate capacity and binding term elasticity coefficient will be identical to that of the binding term
alone.

2. The algorithm cannot separate the effect of single subunit binding from that of cooperative binding.
Additionally, the algorithm can fail in some instances.

For these reasons the separate rate equation terms can be manually defined in a . reqgn file using a relatively simple
syntax. Below follows such a file as automatically generated for the model 1in4_fb.psc:

Automatically parsed and split rate equations for model: 1in4d_fb.psc
generated on: 13:49:07 12-01-2017

Note that this is a best effort attempt that is highly dependent
on the form of the rate equations as defined in the model file.
Check correctness before use.

ETS

R1 :successful separation of rate equation terms

'T{R1}{ma} X0 - S1/Keq_1

'T{R1}{bind_vc} 1.0xVf_1%(S1/S1_05_1 + XO0/X0_05_1)**(h_1 — 1.0)=*(a_1*(S3/S3_05_1)**h__
—1 + 1)/(X0_05_1%(a_1%(S3/S3_05_1)*+h_1%(S1/S1_05_1 + X0/X0_05_1)x*h_1 + (S3/S3_05_
—1)**h_1 + (S1/S1_05_1 + X0/X0_05_1)**h_1 + 1))

'G{R1} {gamma_keq} S1/ (Keq_ 1%X0)

R2 :successful separation of rate equation terms
'T{R2}{ma} S1 - S2/Keq_ 2
'T{R2}{bind_vc} 1.0%S2_05_2+VEf_2/(S1xS2_05_2 + S1_05_2%S2 + S1_05_2%S2_05_2)

(continues on next page)

52 Chapter 6. Thermokin

PyscesToolbox Documentation, Release 1.0.0

(continued from previous page)

IG{R2} {gamma_keq} S2/ (Keq_2xS1)

R3 :successful separation of rate equation terms

IT{R3}{ma} S2 - S3/Keq_ 3

!T{R3}{bind_vc} 1.0%S3_05_3+VEf 3/(S2%S3_05_3 + S2_05_3%S3 + S2_05_3%xS3_05_3)
'G{R3} {gamma_keq} S3/ (Keq_3%S2)

R4 :rate equation not included - irreversible or unknown form

Two types of “terms” can be defined in a . reqn file. The first type denoted by ! T, is factor of the rate equation.
When the ! T terms for a reaction are multiplied together, they should result in the original rate equation.

Secondly ! G terms are any arbitrary terms that could contain some useful information. Unlike the ! T terms, the ! G
are not subject to any restrictions in terms of the value of their product or otherwise. For instance, the ! G terms are
used for define I'/ K., for reversible reactions.

The syntax for ! T and ! G terms are as follows:

'T{%reaction_name} {$term_name} %$term_expression

!G{%reaction_name} {$term_name} $term_expression

* $reaction_name - The name of the reaction to which the term belongs as defined in the . psc file (see the
PySCeS MDL documentation).

* $term_name - The name of the term. While this name is arbitrary, there can be no duplication for any single
reaction.

* $term_expression - The expression of the term.

Thus using the example provided above for reaction 3 the line ! T{R3} {ma} S2 - S3/Keqg_3 specifiesa ! T term
belonging to reaction 3 with the name ma and the expression S2 - S3/Keq_3.

6.2.3 Object instantiation

Instantiation of a Thermok in analysis object requires Py SCe S model object (PysMod) as an argument. Optionally a
. reqn file can be provided that includes specifically slit rate equations. If path is provided, Thermok in will attempt
to automatically split the reversible rate equations as described above and save a . reqn file at ~/Pysces/psc/
$model_name.reqn. If this file already exists, ThermiKin will load it instead. Using the included lin4_fb.psc
model a Thermokin session is instantiated as follows:

In [1]:

mod = pysces.model ('lin4 fb')
tk = psctb.ThermoKin (mod)

Oout[1l]:

Assuming extension is .psc

Using model directory: /home/jr/Pysces/psc
/home/jr/Pysces/psc/lind_fb.psc loading
Parsing file: /home/Jjr/Pysces/psc/lind_fb.psc

Info: "X4" has been initialised but does not occur in a rate equation
Calculating L matrix done.
Calculating K matrix done.

6.2. Usage and feature walkthrough 53

http://pysces.sourceforge.net/docs/inputfile_doc.html
included_files.html#lin4-fb-psc

PyscesToolbox Documentation, Release 1.0.0

Now that ThermoKin has automatically generated a . regn file for 1in4_fb.psc, we can load that file manually
during instantiation as follows:

In [2]:

This path leads to the provided rate equation file file
path_to_regn = '~/Pysces/psc/lin4d_fb.regn'

Correct path depending on platform - necessary for platform independent scripts
if platform == 'win32' and pysces.version.current_version_tuple() < (0,9,8):
path_to_regn = psctb.utils.misc.unix_to_windows_path (path_to_reqgn)
else:
path_to_regn = path.expanduser (path_to_reqgn)

tk = psctb.ThermoKin (mod,path_to_reqn)

If the path specified does not exist, a new . reqgn file will be generated there instead.
Finally, ThermoKin can also be forced to regenerate a the . reqn file by setting the overwrite argumentto True:

In [3]:

tk = psctb.ThermoKin (mod, overwrite=True)

Out[3]:

The file /home/Jjr/Pysces/psc/lin4_fb.regqn will be overwritten with automatically,
—generated file.

R1 : successful separation of rate equation terms
R2 : successful separation of rate equation terms
R3 : successful separation of rate equation terms
R4 : rate equation not included - irreversible or unknown form

6.2.4 Accessing results

Unlike RateChar and Symca, ThermoKin generates results immediately after instantiation. Results are organised
similar to the other two modules, however, and can be found in the reaction_resultsand ec_results objects:

In [4]:

tk.reaction_results

Jr1 44618
TR Lo 44661
TR yemmares | 9-399-04
TRl 0.999
T2 44618

T 2o 5081.101
TR mmarea | 0-909

JR2,.4 0.009
JRr3 44618
JR3pimdve 1036.279

54 Chapter 6. Thermokin

PyscesToolbox Documentation, Release 1.0.0

JIR3 yammaneq | 0951
JRs, ., 0.043

In [5]:

tk.ec_results

Elieq | 9-608e-04

el -9.363e-04
eBls | -2.451e-05
Bl -2.888

eBlo | 2.888
egyr | 1.000

& 3.554
eflos | -3.553
el 0.062
efl -1.461

Eregs | 9931
2 10.883
e s | 0951
eF2 -10.374
eB2 5o | 0443
179 | 1.000
Ehvgs | 19255
el3 19.351
€053 | “0.096

el -19.341
el s 0.086
52?3 1.000
ey 0.000
ke | 1,000
et 9.608e-04
Esgéé’id“ -2.451e-05
£ }3118531"’“’“” 0.000
ealme 0.000
gy 2.451e-05
enremmaked |11 000

6.2. Usage and feature walkthrough 55

PyscesToolbox Documentation, Release 1.0.0

Rlma

e -9.608e-04
sgéggridw 2.888
Eséggimnakeq OOOO
ESR?ié%al 0.000
Es3bindvc -2.888
Rlgjammakeq 0.000
g3 :
Eé?éma 0.000
Eﬁ}bfndm 1.000
sg}g&anwnakeq OOOO
efima 0.000
agio%igfw -3.553
Exoos1 " | 0.000
6%106151 0.000
EXObind'uc 2.553
Ef}tga,mmakeq -1.000
Rlma
it 1.001
Ef/llbindvc 0062
gRllgammakeQ 0 000
A .
%Rllma 0.000
Rlpindve
glTeing -1.461
fllgammakeq 0.000
Eﬁlm 0.000
is;Qelz;éldvc 0000
R2(ammake
ngiﬂ kea 1 _1.000
5512(b)§édw -0951
ESlé];éﬂnLak’eq 0000
5%126%(12 0.000
el binduve -0.049
P2gammarea |1 000
51 :
Ezs%fma 10.931
(_:ggobgédvc 0.443
€S26,génmakeq 0.000
6}52226%3 0.000
55‘2 bindve —0443
Egzzganwna,ke(] 1.000
R2ma
it -9.931
652fb27',nduc 1.000
R2gammakeq 0 000
V£2 -
2 0.000
V2 :

56

Chapter 6. Thermokin

PyscesToolbox Documentation, Release 1.0.0

Eleprindve 0.000
ek | 1,000
Eronns 19.255
e%igggl“ -0.096
Esali ™" | 0.000
=Sl 0.000
egyte | 0,904
£y | -1.000
e 20.255
cogpindve 0.086

gggosgm 0.000
g 0.000
et
5%%9 ekea 1,000
e%%:fad’ -19.255
By 1.000
ey s | 0.000
iR 0.000

Each results object contains a variety of fields containing data related to a specific term or expression and may be
accessed in a similar way to the results of Symca:

* Inspecting an individual reactions, terms, or elasticity coefficient yields a symbolic expression together with a
value

In [6]:

The binding+v_cap term of reaction 1
tk.reaction_results.J _Rl_bind_vc

h171.0 hl
S X S
1L.O-Vfi- (510151 + Xooosl) ’ <a1 ’ (530351) + 1>

hi h1 h1 hi
. Y F R | Xo Ss Sy Xo
Xoos1 (al (53051) <51051 + X0051) + (53051) + (51051 + X0051) + 1)

* SymPy expressions can be accessed via the expression field

= 44.661

JRlbind’uc =

In [7]:

tk.reaction_results.J_R1l_bind_vc.expression
hlfl.O hl
Sl XO 53
LOV /i (SIOSI + XOOSI) <CL1 (53051) + 1)

hi h1 h1 hi
S3 S Xo Ss3 S1 Xo
Xoos1 (al (33051) (51051 + XOOSI) + (53051) + (51051 + X0051) + 1)

* Values of the reaction, term, or elasticity coefficients

In [8]:

tk.reaction_results.J Rl_bind_vc.value

6.2. Usage and feature walkthrough 57

PyscesToolbox Documentation, Release 1.0.0

Oout[8]:

44.66092105160845

Additionally the l1atex_name, latex_expression, and parent model mod can also be accessed

In order to promote a logical and exploratory approach to investigating data generated by The rmoKin, the results are
also arranged in a manner in which terms and elasticity coefficients associated with a certain reaction can be found
nested within the results for that reaction. Using reaction 1 (called J_R1 to signify the fact that its rate is at steady
state) as an example, results can also be accessed in the following manner:

In [9]:

The reaction can also be accessed at the root level of the ThermoKin object
and the bindingx*v_cap term is nested under it.
tk.J_R1l.bind_vc

h1—1.0 h1
S X, S:
1.0-Vf- (510151 + X00051) ’ <a1 ’ (530351) + 1>

h1 h1 h1 h1
. . SJ . Sl X() 53 51 XU
Xoos1 (al (53051) (51051 + X0051> + (&3051) + (Slosl + X0051) + 1)

= 44.661

JRlbindve =

In [107]:

A reaction or term specific ec_results object is also available
tk.J_R1l.bind_vc.ec_results.pecRl_X0_bind_vc

1.0—hy h1—1.0 hy h1
. . . Sl XO . Sl XU . . . S3 . Sl XU — .
a1 1.0 - S1051 - Xo (51051 + X0051) (51051 + Xoos1) (1'0 a1 (53051> (51051 + X0051) 1.0-h
bindve — __
X0 a s \™ s X, \™ S
. . . . 3 Ol =2 20 3
(51 Xoos1 + 1051 - Xo) - { a1 (53051) (Slosl + XOOSI) + (53051
In [117]:

All the terms of a specific reaction can be accessed via terms’
tk.J_Rl.terms

JR1pimdve 44.661
TR g mmaieq | 9-999e-04
JR1,., 0.999

While each reaction/term/elasticity coefficient may be accessed in multiple ways, these fields are all references to the
same result object. Modifying a term accessed in one way, therefore affects all references to the object.

6.2.5 Dynamic value updating

The values of the reactions/terms/elasticity coefficients are automatically updated when a new steady state is calculated
for the model. Thus changing a parameter of 1in4_hi1l1, such as the V value of reaction 3, will lead to new values:

In [12]:
Original value of J_R3
tk.J_R3
1.0-8 Vs (K - Sy — S
Ty = 3053 * V f3 - (Keqz - S2 — S3) 44618
Keqs - (S2 - S3053 + S2053 - S3 + S2053 - S3053)
In [13]

58 Chapter 6. Thermokin

PyscesToolbox Documentation, Release 1.0.0

mod.reLoad ()

mod.Vf_3 has a default value of 1000
mod.Vf_3 = 0.1

calculating new steady state
mod.doState ()

Oout[13]:

Parsing file: /home/jr/Pysces/psc/lind_fb.psc

Info: "X4" has been initialised but does not occur in a rate equation
Calculating L matrix done.

Calculating K matrix done.

INFO: (hybrd) Invalid steady state:

(hybrd) The iteration is not making good progress, as measured by the
improvement from the last ten iterations.

WARNING!! Negative concentrations detected.

INFO: STATE is switching to NLEQ2 solver.

(nleg2) The solution converged.

In [14]:

New value (original was 44.618)
tk.J_R3

1.0 - S3053 - V f3 - (Keqs - So — S3)

= = 0.100
Keqs - (S2 - S3053 + S2053 - S3 + S2053 - S3053)

JRr3

In [15]:

resetting to default Vf_3 value and recalculating
mod.reLoad ()
mod.doState ()

Out [15]:

Parsing file: /home/Jjr/Pysces/psc/lin4_fb.psc
Info: "X4" has been initialised but does not occur in a rate equation

Calculating L matrix done.
Calculating K matrix done.

(hybrd) The solution converged.

6.2.6 Parameter scans

Parameter scans can be performed in order to determine the effect of a parameter change on a reaction rate and
its individual terms or on the elasticity coefficients relating to a particular reaction and its related term elasticity
coefficients (denoted as pec%$reaction_$modifier_$term see Basic Usage - Syntax) . The procedures for
both the “value” and “elasticity” scans are very much the same and rely on the same principles as described under
Basic Usage - Plotting and Displaying Results.

To perform a parameter scan the do_par_scan method is called. This method has the following arguments:

* parameter: A String representing the parameter which should be varied.

6.2. Usage and feature walkthrough 59

basic_usage.html#syntax
basic_usage.html#plotting-and-displaying-results

PyscesToolbox Documentation, Release 1.0.0

scan_range: Any iterable representing the range of values over which to vary the parameter (typically a
NumPy ndarray generated by numpy.linspace or numpy.logspace).

scan_type: Either "elasticity" or "value" as described above (default: "value™").

init_return: If True the parameter value will be reset to its initial value after performing the parameter
scan (default: True).

par_scan: If True, the parameter scan will be performed by multiple parallel processes rather than a single
process, thus speeding performance (default: False).

par_engine: Specifies the engine to be used for the parallel scanning processes. Can either be
"multiproc" or "ipcluster". A discussion of the differences between these methods are beyond the
scope of this document, see here for a brief overview of Multiprocessing in Python. (default: "multiproc").

Below we will perform a value scan of the effect of Vs on the terms of reaction 1 for 200 points between 0.01 and
100000 in log space:

In

[16]:

valscan = tk.J_Rl.do_par_scan('Vf_3',scan_range=numpy.logspace (-2,5,200),scan_type=
—'value')

Out[1l6]:

MaxMode 0O
0 min 0 sec
SCANNER: Tsteps 200

SCANNER: 200 states analysed

(hybrd) The solution converged.

In

[17]:

valplot = valscan.plot ()

Equivalent to clicking the corresponding buttons
valplot.toggle_category ('J_R1', True)

valplot.toggle_category

J_R1_bind_vc', True)

(L}
valplot.toggle_category ('J_R1l_gamma_keqg', True)
(]

valplot.toggle_category

J Rl_ma', True)

valplot.interact ()

60

Chapter 6. Thermokin

http://www.davekuhlman.org/python_multiprocessing_01.html

PyscesToolbox Documentation, Release 1.0.0

All Fluxes/Reactions/Species
Flux Rates Term Rates
Flux Rates
J Rt
Term Rates

J R1 bind ve | J R1 gamma keq | J R1_ma

Save
10 - - . : : :
107}]
1] i
g 10
o
E
Q
t .
[
=
4 .
J
1]
U
a8
10-5 2 I 1 I 0 I1 I2 I3 I4 5
10° 10° 10 10 10 10 10 10
VF 3
- JR]- g akeyg JR]- e JR]-
— Jri,.

Similarly, we can perform an elasticity scan using the same parameters:

In [18]:

ecscan = tk.J_Rl.do_par_scan('Vf_3',scan_range=numpy.logspace(-2,5,200),scan_type=
—'elasticity"')

out[18]:

MaxMode 0O
0 min 0 sec
SCANNER: Tsteps 200

SCANNER: 200 states analysed

(continues on next page)

6.2. Usage and feature walkthrough 61

PyscesToolbox Documentation, Release 1.0.0

(continued from previous page)

(hybrd) The solution converged.

Note: Elasticity coefficients with expression equal to zero (which will by definition have zero values regardless of any
parameter values) are ommitted from the parameter scan results even though they are included in the ec_results

objects.

In [19]:

ecplot = ecscan.plot ()

All term elasticity coefficients are enabled
by default, thus only the "full" elasticity

coefficients need to be enabled. Here we

switch on the elasticity coefficients

representing the sensitivity of R1 with

respect to the substrate S1 and the inhibitor
S3.

ecplot.toggle_category('ecR1l_S1', True)
ecplot.toggle_category('ecR1l_S3', True)

The y limits are adjusted below as the elasticity
values of this parameter scan have extremely

large magnitudes at low Vf_3 values
ecplot.ax.set_ylim((-20,20))

ecplot.interact ()

62

Chapter 6. Thermokin

PyscesToolbox Documentation, Release 1.0.0

All Coefficients
Elasticity Coefficients Term Elasticities
Elasticity Coefficients
ecR1_Keq_1 ecR1_S1 ecR1_S1_03_1 ecR1_S3 ecR1_83_05_1 ecR1_Vi_1 ecR1_X0 ecR1_X0_05_1 ecR1_a 1 ecR1_h_1

Term Elasticities
pecR1_Keq_1_ma pecR1_S1_05_1_bind_vc pecR1_51_bind_vc pecR1_51_ma pecR1_S3_05_1_bind vc pecR1_S3 bind_vc

pecR1_Vf 1_bind vc pecR1_X0_05_1_bind_vc pecR1_X0_bind_vc pecR1_X0_ma pecR1_a_1_bind_vc pecR1_h_1_bind_vc

Save

20

15¢

10+

Elasticity Coefficient
[==]
1

_5 [
_10 [
-15
_20 L L I L I L
1072 1071 10° 10! 102 10° 104 10°
VF 3
I L P e _
- ts; g3 “a3
R, _R1
S5 cs1

6.2.7 Saving results

In addition to being able to save parameter scan results (as previously described in Basic Usage - ScanFig), a sum-
mary of the results found in reaction_results and ec_results can be saved using the save_results
method. This saves a csv file (by default) to disk to any specified location. If no location is specified, a file named
tk_summary_Nissaved to the ~/Pysces/$modelname/thermokin/ directory, where N is a number starting
at0:

In [20]:

tk.save_results ()

save_results has the following optional arguments:
e file_name: Specifies a path to save the results to. If None, the path defaults as described above.
* separator: The separator between fields (default: ", ")

The contents of the saved data file is as follows:

In [21]:

the following code requires ‘pandas’ to run

import pandas as pd

load csv file at default path

results_path = '~/Pysces/lind_fb/thermokin/tk_summary_0.csv'

(continues on next page)

6.2. Usage and feature walkthrough 63

basic_usage.html#scanfig

PyscesToolbox Documentation, Release 1.0.0

(continued from previous page)

Correct path depending on platform - necessary for platform independent scripts
if platform == 'win32' and pysces.version.current_version_tuple() < (0,9,8):
results_path = psctb.utils.misc.unix_to_windows_path (results_path)
else:
results_path = path.expanduser (results_path)

saved_results = pd.read_csv(results_path)

show first 20 lines
saved_results.head (n=20)

64 Chapter 6. Thermokin

CHAPTER /

Included Files

Here are the files that are used in the examples as well as the interactive notebook versions of the documentation.

7.1 Models

The models used in this documentation are included below (together with other additional files). These files must be
downloaded to the psc directory to be used in the example notebooks unless otherwise specified.

7.1.1 example_model.psc

X2

o)
Ha

S1

%6 L

X3

model

65

PyscesToolbox Documentation, Release 1.0.0

layout file

The text of example_model . psc is included below:

example_model.psc

Fixed Species

FIX: X0 X2 X3

Reaction definitions

R1:
X0 = Ss1
((VEl / Kml_X0) * (X0 - S1 / Keqgl)) / (1 + X0/Kml_X0 + S1/Kml_S1)
R2:
S1 = X2
((VE2 / Km2_S1) * (S1 - X2 / Keg2)) / (1 + S1/Km2_S1 + X2/Km2_X2)
R3
S1 = X3
((VE3 / Km3_S1) * (S1 - X3 / Keqg3)) / (1 + S1/Km3_S1 + X3/Km3_X3)
,,,

Fixed species concentrations

X0 = 100
X2 =10
X3 =1

Parameters

Vil = 100.0
Kegl = 10.0
Kml_X0 = 1.0
Kml_S1 = 1.0

V2 = 50.0
Keg2 = 10.0
Km2_S1 = 1.0
Km2_X2 1.0

vVE3 = 10.0
Keg3 = 10.0
Km3_S1
Km3_X3

1.
1.

o o

66 Chapter 7. Included Files

PyscesToolbox Documentation, Release 1.0.0

7.1.2 lin4_fb.psc

model
layout file
separated rate equations file

The text of 1in4_fb.psc is included below:

1in4 fb.psc
Fixed Species

FIX: X0 X4

Reaction definitions

R1:
X0 = S1
(VE_1 * (X0 / X0_05_1) * (1 - ((S1/X0)/Keq_1)) =
(X0/X0_05_1 + S1/81_05_1)+**(h_1-1)) /
((X0/X0_05_1 + S1/S1_05_1)#**(h_1) +
(1 + (83/S83_05_1)*x(h_1))/(1 + a_1 = (S3/S83_05_1)**(h_1)))
R2:
S1 = 82
(VE_2 * (S1 / S1_05_2) =
(1 - ((s2/81)/Keq_2))) / (1 + S1/S1_05_2 + S2/S2_05_2)
R3:
S2 = 83
(VE_3 % (S2 / S82_05_3) =
(1 — ((s3/s2)/Keq_3))) / (1 + S2/52_05_3 + S3/S3_05_3)
R4:
S3 = X4
(VE_4%53)/(S3 + S3_05_4)

Variable species initial concentrations

s1 =1
s2 =1
S3 =1

(continues on next page)

7.1. Models

67

PyscesToolbox Documentation, Release 1.0.0

(continued from previous page)

Fixed species concentrations

X0 =1
X4 =1
B

Parameters

vf_1 = 400.0
Keg_1 = 100.0
X0_05_1 = 1.0
S1_05_1 = 10000.0

h 1 =4
S3_05_1 = 5.0
a_l = 0.01

vVf_2 = 10000.0
Keg_2 = 10.0

S1_05_2 1.
S2_05_2 = 1.

0
0

Vf_3 = 1000.0
Keg_ 3 = 10.0

S2_05_3 0.01
S3_05_3 = 1.0

vf_4 = 50.0
S3_05_4 = 1.0

7.2 Example Notebooks

The example Jupyter notebooks are runnable versions of the pages Basic Usage, RateChar, Symca and Thermokin
found in this documentation.

basic_usage.ipynb
RateChar.ipynb
Symca.ipynb

Thermokin.ipynb

68 Chapter 7. Included Files

basic_usage.html
RateChar.html
Symca.html
Thermokin.html

CHAPTER 8

References

[1] Olivier, B. G., Rohwer, J. M. & Hofmeyr, J.-H. S. Modelling cellular systems with PySCeS Bioinformatics, 2005,
21, 560-561

[2] Christensen, C. D., Hofmeyr, J.-H. S. & Rohwer, J. M. PySCeSToolbox: a collection of metabolic pathway analysis
tools Bioinformatics, 2018, 34, 124-125

[3] Hofmeyr, J.-H. S. Control-pattern analysis of metabolic pathways Eur. J. Biochem., 1989, 186, 343-354

[4] Hofmeyr, J.-H. S. Metabolic control analysis in a nutshell /n: Yi, T.-M., Hucka, M., Morohashi, M. & Kitano, H.
(Eds.) Proceedings of the 2nd International Conference on Systems Biology, Omnipress, Madison, WI, USA, 2001,
pp- 291-300

[5] Hofmeyr, J.-H. S. & Cornish-Bowden, A. Regulating the cellular economy of supply and demand FEBS Lett.,
2000, 476, 47-51

[6] Rohwer, J. M. & Hofmeyr, J.-H. S. Identifying and characterising regulatory metabolites with generalised supply-
demand analysis J. Theor. Biol., 2008, 252, 546-554

[7] Hofmeyr, Jan-Hendrik. S. Metabolic regulation: A control analytic perspective J. Bioenerg. Biomembr., 1995, 27,
479-490

[8] Rohwer, J. M. & Hofmeyr, J.-H. S. Kinetic and thermodynamic aspects of enzyme control and regulation J. Phys.
Chem. B, 2010, 114, 16280-16289

69

PyscesToolbox Documentation, Release 1.0.0

70

Chapter 8. References

CHAPTER 9

Module reference

9.1 psctb package

9.1.1 Subpackages
psctb.analyse package

Subpackages

psctb.analyse._symca package
Submodules
psctb.analyse._symca._symca module

class psctb.analyse._symca._symca.Symea (mod, auto_load=False, inter-
nal_fixed=False, ignore_steady_state=False,

keep_zero_elasticities=True)
Bases: object

A class that performs Symbolic Metabolic Control Analysis.

This class takes pysces model as an input and performs symbolic inversion of the E matrix using Sympy by
calculating the determinant and adjoint matrices of this E matrix.

Parameters
mod [PysMod] The pysces model on which to perform symbolic control analysis.
auto_load [boolean] If true

Returns

71

PyscesToolbox Documentation, Release 1.0.0

Attributes
ematrix
esL
es_matrix
fluxes
fluxes_dependent
fluxes_independent
kmatrix
Imatrix
nmatrix
num_ind_fluxes
num_ind_species
scaled_k
scaled_kO
scaled_l
scaled_l0
species
species_dependent
species_independent

subs_fluxes

Methods

do_symca

load_session

path_to

save_results

save_session

do_symca (internal_fixed=None, auto_save_
ematrix

esL

es_matrix

fluxes

fluxes_dependent
fluxes_independent

kmatrix

lmatrix

load=False)

72

Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

load_session (file_name=None)
nmatrix

num_ind_ fluxes
num_ind_species

path_to (path)

save_results (file_name=None, separator=", ", fmt="%.9f")
save_session (file_name=None)
scaled_k

scaled_kO

scaled_ 1

scaled 10

species

species_dependent
species_independent

subs_fluxes

psctb.analyse._symca.ccobjects module

class psctb.analyse._symca.ccobjects.CCBase (mod, name, expression, ltxe)
Bases: object

The base object for the control coefficients and control patterns
Attributes
latex_expression
latex_name
value The value property.
latex_expression
latex_ name

value
The value property. Calls self._calc_value() when self._value is None and returns self._value

class psctb.analyse._symca.ccobjects.CCoef (mod, name, expression, denominator, ltxe)
Bases: psctb.analyse._symca.ccobjects.CCBase

The object the stores control coefficients. Inherits from CCBase
Attributes
abs_value
latex_expression
latex_expression_full
latex_name

latex_numerator

9.1. psctb package 73

PyscesToolbox Documentation, Release 1.0.0

value The value property.

Methods

do_par_scan
highlight_patterns

abs_value

do_par_scan (parameter, scan_range, scan_type="percentage’, init_return=True, par_scan=False,
par_engine="multiproc’, force_legacy=False)

highlight_patterns (width=None, height=None, show_dummy_sinks=False,
show_external_modifier_links=False, pos_dic=None)

latex_expression
latex_expression_full
latex name

latex numerator

class psctb.analyse._symca.ccobjects.CPattern (mod, name, expression, denominator, par-

ent, ltxe)
Bases: psctbh.analyse._symca.ccobjects.CCBase

docstring for CPattern
Attributes
latex_expression
latex_expression_full
latex_name
latex_numerator
percentage
value The value property.
latex_expression
latex_expression_full
latex_name
latex numerator
percentage
psctb.analyse._symca.ccobjects.cctype (0bj)

psctb.analyse._symca.ccobjects.get_state (mod, do_state=False)

psctb.analyse._symca.symca_toolbox module

class psctb.analyse._symca.symca_toolbox.SymcaToolBox
Bases: object

The class with the functions used to populate SymcaData. The project is structured in this way to abstract the
‘work’ needed to build the various matrices away from the SymcaData class.

74 Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

Methods

adjugate_mat rix(matrix)

Returns the adjugate matrix which is the transpose of
the cofactor matrix.

build_cc_matrix(j,jind, sind, jdep, sdep)

Produces the matrices j_cci, j_ccd, s_cci and s_ccd
which holds the symbols for the independent and
dependent flux control coefficients and the indepen-
dent and dependent species control coefficients re-
spectively

det_barei s(matrix)

Adapted from original det_bareis function in Sympy
0.7.3.

get_es_matrix(mod, nmatrix, fluxes, species)

Gets the esmatrix.

get_es_matrix_no_mca(mod, nmatrix, fluxes,

)

Gets the esmatrix.

get_fluxes_vector(mod)

Gets the dependent and independent fluxes (in the
correct order)

get_nmatrix(mod)

Returns a sympy matrix made from the N matrix in
a Pysces model where the elements are in the same
order as they appear in the k and 1 matrices in pysces.

get_species_vector(mod)

Returns a vector (sympy matrix) with the species in
the correct order

1invert(matrix, path_to)

Returns the numerators of the inverted martix sepa-
rately from the common denominator (the determi-
nant of the matrix)

maxima_ factor(expression, path_to)

This function is equivalent to the sympy.cancel()
function but uses maxima instead

scale_mat rix(all_elements, mat, inds)

Scales the k or 1 matrix.

simplify matrix(matrix)

Replaces floats with ints and puts elements with frac-
tions on a single demoninator.

solve_dep(cc_i_num, scaledkO, scaledlo, ...)

Calculates the dependent control matrices from the
independent control matrix CC_i_solution

substitute_fluxes(all_fluxes, kmatrix)

Substitutes equivalent fluxes in the kmatrix (e.i.

build_inner_dict

build_outer_dict

fix_expressions

generic_populate

get_fix_denom

get_fix_denom_jannie

get_num_ind_fluxes

get_num_ind_species

make_ CC_dot_dict

make_inner_dict

make_internals_dict

populate_with_fake_elasticities

populate_with_fake_fluxes

populate_with_fake_ss_concentrations

spawn_cc_objects

static adjugate_matrix (matrix)

Returns the adjugate matrix which is the transpose of the cofactor matrix.

9.1. psctb package

75

PyscesToolbox Documentation, Release 1.0.0

Contains code adapted from sympy. Specifically:
cofactorMatrix() minorEntry() minorMatrix() cofactor()

static build_cc _matrix (j, jind, sind, jdep, sdep)
Produces the matrices j_cci, j_ccd, s_cci and s_ccd which holds the symbols for the independent and
dependent flux control coefficients and the independent and dependent species control coefficients respec-
tively

static build_inner_ dict (cc_object)
static build_outer_dict (symca_object)

static det_bareis (matrix)
Adapted from original det_bareis function in Sympy 0.7.3. cancel() and expand() are removed from func-
tion to speed up calculations. Maxima will be used to simplify the result

Original docstring below:

Compute matrix determinant using Bareis’ fraction-free algorithm which is an extension of the well known
Gaussian elimination method. This approach is best suited for dense symbolic matrices and will result in
a determinant with minimal number of fractions. It means that less term rewriting is needed on resulting
formulae.

static fix_ expressions (cc_num, common_denom_expr, Imatrix, species_independent,
species_dependent)

static generic_populate (mod, function, value=1)

static get_es_matrix (mod, nmatrix, fluxes, species)
Gets the esmatrix.

Goes down the columns of the nmatrix (which holds the fluxes) to get the rows of the esmatrix.
Nested loop goes down the rows of the nmatrix (which holds the species) to get the columns of the esmatrix
so the format is

ecReationNO_MO ecReationNO_M1 ecReationNO_M2 ecReationN1_MO ecReationN1_M1 ecRe-
ationN1_M2 ecReationN2_MO ecReationN2_M1 ecReationN2_M?2

static get_es_matrix_no_mca (mod, nmatrix, fluxes, species)
Gets the esmatrix.

Goes down the columns of the nmatrix (which holds the fluxes) to get the rows of the esmatrix.
Nested loop goes down the rows of the nmatrix (which holds the species) to get the columns of the esmatrix
so the format is

ecReationNO_MO ecReationNO_M1 ecReationNO_M2 ecReationN1_MO ecReationN1_M1 ecRe-
ationN1_M2 ecReationN2_ MO ecReationN2_M1 ecReationN2_M?2

static get_fix_denom (lmatrix, species_independent, species_dependent)
get_fix_denom_jannie (species_independent, species_dependent)

static get_fluxes_vector (mod)
Gets the dependent and independent fluxes (in the correct order)

static get_nmatrix (mod)
Returns a sympy matrix made from the N matrix in a Pysces model where the elements are in the same
order as they appear in the k and 1 matrices in pysces.

‘We need this to make calculations easier later on.

static get_num_ind_fluxes (mod)

76

Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

static get_num_ind_species (mod)

static get_species_vector (mod)
Returns a vector (sympy matrix) with the species in the correct order

static invert (matrix, path_to)
Returns the numerators of the inverted martix separately from the common denominator (the determinant
of the matrix)

static make_CC_dot_dict (cc_objects)
static make_inner_ dict (cc_container, cc_container_name)
static make_internals_dict (cc_sol, cc_names, common_denom_expr, path_to)

static maxima_factor (expression, path_to)
This function is equivalent to the sympy.cancel() function but uses maxima instead

static populate_with_fake_elasticities (mod)
static populate_with_fake_fluxes (mod)
static populate_with_fake_ss_concentrations (mod)

static scale_matrix (all_elements, mat, inds)
Scales the k or 1 matrix.

The procedure is the same for each matrix: (D*x)"(-1) * y * DNx_i)

Inverse diagonal The matrix to be The diagonal of of the x where scaled. i.e. the the independent x x is
either the k or 1 matrix where x is the species or the species or the fluxes fluxes

static simplify matrix (matrix)
Replaces floats with ints and puts elements with fractions on a single demoninator.

static solve_dep (cc_i_num, scaledk0, scaledlO, num_ind_fluxes, path_to)
Calculates the dependent control matrices from the independent control matrix CC_i_solution

static spawn_cc_objects (mod, cc_names, cc_sol, common_denom_exp, ltxe)

static substitute_fluxes (all_fluxes, kmatrix)
Substitutes equivalent fluxes in the kmatrix (e.i. dependent fluxes with independent fluxes or otherwise
equal fluxes)

Module contents
Submodules
psctb.analyse._ratechar module

class psctb.analyse._ratechar.RateChar (mod, min_concrange_factor=100,
max_concrange_factor=100, scan_points=256,

auto_load=False)
Bases: object

9.1. psctb package 77

PyscesToolbox Documentation, Release 1.0.0

Methods
do_ratechar
load_session
save_results
save_session
do_ratechar (fixed="all’, scan_min=None, scan_max=None, min_concrange_factor=None,

max_concrange_factor=None, scan_points=None, solver=0, auto_save=False)

load_session (file_name=None)
save_results (folder=None, separator=", ’, format="%f")

save_session (file_name=None)

psctb.analyse._thermokin module

class psctb.analyse._thermokin.ThermoKin (mod, path_to_regn_file=None, overwrite=False,

warnings=True, ltxe=None)
Bases: object

Methods

| save_results | |

save_results (file_name=None, separator=", ’, fmt="%.9f")

psctb.analyse._thermokin_file_tools module

exception psctb.analyse._thermokin_file_tools.FormatException
Bases: Exception

psctb.analyse._thermokin_file_tools.check_ for negatives (ferms)
Returns True for a list of sympy expressions contains any expressions that are negative.

Parameters

terms [list of sympy expressions] A list where expressions may be either positive or negative.
Returns

bool True if any negative terms in expression. Otherwise False

psctb.analyse._thermokin_file_tools.check_term_format (lines, term_type)
Inspects a list of string for the correct ThermoKin syntax. Returns True in case of correct format. Throws
exception otherwise.

Correct format is a str matching the pattern “X{w*}{w*} .*” . Where “X” is either “!G” or “!T” as specified by
term_type.

Parameters
lines [list of str] Clean list of lines from a ‘.reqn’ file.

term_type [str] This string specifies the type of term.

78 Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

Returns
bool

psctb.analyse._thermokin_file_tools.construct_dict (lines)
Constructs a dictionary of dictionaries for each reaction.

Here keys of the outer dictionary is reaction name strings while the inner dictionary keys are the term names.
The inner dictionary values are the term expressions

Parameters
lines [list of str]
Returns
dict of str:{str:str}
psctb.analyse._thermokin_file_tools.create_gamma_ keq reqn_data (mod)
psctb.analyse._thermokin_file_tools.create_reqn_data (mod)
psctb.analyse._thermokin_file_tools.filter_ irreversible (sympy_terms)
psctb.analyse._thermokin_file_tools.get_all_terms (path_to_read)

psctb.analyse._thermokin_file_tools.get_binding_ vc_terms (sympy_formulas,

o])) o ma_terms)
Returns dictionary with a combined “rate capacity” and “binding” term as values.

Uses the symbolic rate equations dictionary and mass action term dictionaries to construct a new dictionary with
“rate capacity- binding” terms. The symbolic rate equations are divided by their mass action terms. The results
are the “rate capacity-binding” terms. This use case requires reaction names as they appear in pysces as keys for
both dictionaries.

Parameters

sympy_formulas [dict of str:sympy expression] Full rate equations for all reactions in model.
Keys are reaction names and correspond to this in ma_terms.

ma_terms [dict of str:sympy expression] Mass action terms for all reactions in model. Keys
are reaction names and correspond to this in sympy_formulas.

Returns

dict of str:sympy expression A dictionary with reaction names as keys and sympy expressions
representing “rate capacity-binding” terms as values.

psctb.analyse._thermokin_file_tools.get_gamma_keq terms (mod, sympy_terms)

psctb.analyse._thermokin_file_tools.get_ma_terms (mod, sympy_terms)
Returns dict with reaction names as keys and mass action terms as values from a dict with reaction names as
keys and lists of sympy expressions as values.

Only reversible reactions are handled. Any list in the sympy_terms dict that does not have a length of 2 will
be ignored.

Parameters
mod [PysMod] The model from which the sympy_terms dict was originally constructed.

sympy_terms: dict of str:list of sympy expressions This dictionary should be created by
get_sympy_terms.

Returns

9.1. psctb package 79

PyscesToolbox Documentation, Release 1.0.0

dict of str:sympy expression Each value will be a mass action term for each reaction key with
a form depending on reversibility as described above.

See also:

get_st_pt keg

get_sympy terms

sort_terms
psctb.analyse._thermokin_file_tools.get_reqn_path (mod)
Gets the default path and filename of“.reqn‘ files belonging to a model

The .regn files which contain rate equations split into different (arbitrary) components should be saved in the
same directory as the model file itself by default. It should have the same filename (sans extension) as the model
file.

Parameters

mod [PysMod] A pysces model which has corresponding .regn file saved in the same directory
with the same file name as the model file.

Returns
str A sting with the path and filename of the .regn file.

psctb.analyse._thermokin_file_tools.get_st_pt_keq (expression, substrates, products)
Takes an expression representing ‘“substrates/products * Keq_expression” and returns substrates, products and
keq_expression separately.

Parameters

expression [sympy expression] The expression containing “substrates/products *
Keq_expression”

substrates [list of sympy symbols] List with symbolic representations for each substrate in-
volved in the reaction which expression represents.

products [list of sympy symbols] List with symbolic representations for each product involved
in the reaction which expression represents. Returns

tuple of sympy expressions and int This tuple contains sympy expressions for the substrates,
products and keq_expression in that order. The final value will be an int which indicates the
strategy followed.

See also:
st_pt _keq from expression
psctb.analyse._thermokin_file_tools.get_str_formulas (mod)

Returns a dictionary with reaction_name:string_formula as key:value pairs.

Goes through mod.reactions and constructs a dictionary where reaction_name is the key and
mod.reaction_name.formula is the value.

Parameters
mod [PysMod] The model which will be used to construct the dictionary

Returns

80 Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

dict of str:str A dictionary with reaction_name:string_formula as key:value pairs

psctb.analyse._thermokin_file_tools.get_subs_dict (expression, mod)
Builds a substitution dictionary of an expression based of the values of these symbols in a model.

Parameters
expression [sympy expression]
mod [PysMod]

Returns
dict of sympy.Symbol:float

psctb.analyse._thermokin_file_tools.get_sympy formulas (str_formulas)
Converts dict with str values to sympy expression values.

Used to convert key:string_formula to key:sympy_formula. Intended use case is for automatic separation of rate
equation terms into mass action and binding terms. This use case requires reaction names as they appear in
pysces as keys.

Parameters

str_formulas [dict of str:str] Dictionary with str values that represent reaction expressions. This
dictionary needs to have already passed through all sanitising functions/methods (e.g. re-
place_pow).

Returns

dict with sympy_expression values and original keys Dictionary where values are symbolic
sympy expressions
psctb.analyse._thermokin_file_tools.get_sympy terms (sympy_formulas)

Converts a dict with sympy expressions as values to a new dict with list values containing either the original
expression or a negative and a positive expressions.

This is used to separate reversible and irreversible reactions. Reversible reactions will have two terms, one
negative and one positive. Here expressions are expanded and split into terms and tested for the above criteria:
If met the dict value will be a list of two expressions, each representing a term of the rate equation. Otherwise
the dict value will be a list with a single item - the original expression. This use case requires reaction names as
they appear in pysces as keys.

Parameters

sympy_formulas [dict of str:sympy expression values] Dictionary with values representing rate
equations as sympy expressions. Keys are reaction names

Returns

dict of str:list sympy expression Each list will have either have one item, the original dict
value OR two items -the original dict value split into a negative and positive expression.

See also:
check_for negatives

psctb.analyse._thermokin_file_tools.get_term_dict (raw_lines, term_type)
Returns the term dictionary from a list of raw lines from a file.

k)

The contents of a ‘.reqn’ file is read and passed to this function. Here the contents is parsed and ‘main terms
are extracted and returned as a dict of str:{str:str}.

Parameters

9.1. psctb package 81

PyscesToolbox Documentation, Release 1.0.0

raw_lines [list of str] List of lines from a ‘.reqn’ file.
Returns
dict of str:{str:str}

psctb.analyse._thermokin_file_tools.get_term_ types_from_raw data (raw_data_dict)
Determines the types of terms defined for ThermoKin based on the file contents. This allows for generation of
latex expressions based on these terms.

Parameters

raw_data_dict [dict of str:{str:str}]
Returns

set of str

psctb.analyse._thermokin_file_tools.get_terms (raw_lines, term_type)
Takes a list of strings and returns a new list containing only lines starting with term_type and strips line endings.

Term can be either of the “main” (or /T) type or additional (or /G) type
Parameters
raw_lines [list of str] List of lines from a ‘.reqn’ file.
term_type [str] This string specifies the type of term.
Returns
list of str

psctb.analyse._thermokin_file_tools.read_reqn_file (path_to_file)
Reads the contents of a file and returns it as a list of lines.

Parameters

path_to_file [str] Path to file that is to read in
Returns

list of str The file contents as separate strings in a list

psctb.analyse._thermokin_file_tools.replace_pow (str_formulas)
Creates new dict from an existing dict with “pow(x,y)” in values replaced with “x**y

th)

Goes through the values of an dictionary and uses regex to convert the pysces internal syntax for powers with
standard python syntax. This is needed before conversion to sympy expressions. This use case requires reaction
names as they appear in pysces as keys.

Parameters

str_formulas [dict of str:str] A dictionary where the values as contain pysces format strings
representing rate equation expressions with powers in the syntax “pow(x,y)”

Returns

dict of str:str A new dictionary with str rate equations where powers are represented by stan-
dard python syntax e.g. x**y

psctb.analyse._thermokin_file_tools.sort_terms (terms)
Returns a list of two sympy expressions where the expression is positive and the second expression is negative.

Parameters

terms [list of sympy expressions] A list with length of 2 where one element is positive and the
other is negative (starts with a minus symbol)

82 Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

Returns

tuple of sympy expressions A tuple where the first element is positive and the second is nega-
tive.

psctb.analyse._thermokin_file_tools.st_pt_keq from expression (expression,
substrates,
products, fail-

ure_threshold=10)
Take an expression representing ‘“‘substrates/products * Keq_expression” and returns substrates, products and

keq_expression separately.

In this strategy there is no inspection of the stoichiometry as provided by the model map. Here the expressions
is divided/multiplied by each substrate/product until it no longer appears in the expression. If the substrates or
products are not removed after a defined number of attempts a total failure occurs and the function returns None

This is a fallback for cases where defined stoichiometry does not correspond to the actual rate equation.
Here cases where the substrate/product do not appear in the rate equation at all throws an assertion error.
Parameters

expression [sympy expression] The expression containing ‘“‘substrates/products *
Keq_expression”

substrates [list of sympy symbols] List with symbolic representations for each substrate in-
volved in the reaction which expression represents.

products [list of sympy symbols] List with symbolic representations for each product involved
in the reaction which expression represents.

failure_threshold [int, optional (Default: 10)] A threshold value the defines the number of
times the metabolite removal strategy should be tried before failure.

Returns

tuple of sympy_expressions or None This tuple contains sympy expressions for the substrates,
products and keq_expression in that order. None is returned if this strategy fails.

psctb.analyse._thermokin_file_tools.term_to_£file (file_name, expression, par-
ent_name=None, term_name=None)
psctb.analyse._thermokin_file_tools.write_reqn_£file (file_name, model_name,
ma_terms, ve_binding_terms,

gamma_keq_terms, messages)

Module contents

psctb.latextools package

Submodules
psctb.latextools._expressions module

class psctb.latextools._expressions.LatexExpr (mod)
Bases: object

docstring for LatexExpr

Attributes

9.1. psctb package 83

PyscesToolbox Documentation, Release 1.0.0

prc_subs
subs_dict

tk_subs

Methods

add_term_types
expression_to_latex

add_term_types (term_types)
expression_to_latex (expression, mul_symbol=None)
prc_subs

subs_dict

tk_subs

Module contents

psctb.modeltools package

Submodules
psctb.modeltools._paths module

psctb.modeltools._paths.get_model_name (mod)
Returns the file name of a pysces model object sans the file extension.

Parameters

mod [PysMod] Model of interest.
Returns

str File name of a mod sans extension.

psctb.modeltools._paths.make_path (mod, analysis_method, subdirs=[])
Creates paths based on model name and analysis type.

This function is used to create directories (in the case where they don’t already exist) to write analysis results to
and return the path name. Subdirectories can also be created.

/path/to/Pysces/model_name/analysis_method/subdir1/subdir2/
Parameters
mod [PysMod] The model being analysed.
analysis_method [str] The name of the tool being used to analyse the model.

subdirs [list of str] An optional list of subdirectories where each additional entry in the list will
create a subdirectory in the previous directories.

Returns

str The directory string

84 Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

Examples

>>> print make_path(mod, 'analysis_method', subdirs = ['subdirl', subdir2])
'/path/to/Pysces/model_name/analysis_method/subdirl/subdir2/"

psctb.modeltools._paths.next_suffix (directory, base_name, ext=None)
Returns the number of the next suffix to be appended to a base file name when saving a file.

This function checks a directory for files containing base_name and returns a number that is equal to the
suffix of a file named base_name with the largest suffix plus one.

Parameters
directory [str] The directory to inspect for files.
base_name [str] The base name (sans suffix) to check for.
Returns
int The next suffix to write

psctb.modeltools._paths.get_£file_path (working_dir, internal_filename, fmt, fixed=None,

file_name=None, write_suffix=True)
An heuristic for determining the correct file name.

This function determines the file name according to the information supplied by the user and the internals of a
specific class.

Parameters

working_dir [str] The working dir of the specific class (where files are saved if no file name is
supplied)

internal_filename [str] The default base name (sans numbered suffix) of files when no other
details are provided.

fmt [str] The format (extension) that the file should be saved in. This is used both in determin-
ing file name if no file name is provided as well as when a file name without extension is
provided.

fixed [str, Optional (Default]
In the case that a metabolite is fixed, files will be saved in a subdirectory of the working

directory that corresponds to the fixed metabolite.

file_name [str, Optional (Default][None)] If a file name is supplied it overwrites all other
options except fmt in the case where no extension is supplied.

Returns
str The final file name

psctb.modeltools._paths.get_£fmt (file_name)
Gets the extension (fmt) from a file name.

Parameters
file_name [str] The file to get an extension from
Returns

str The extension string

9.1. psctb package 85

PyscesToolbox Documentation, Release 1.0.0

psctb.modeltools._pscmanipulate module

psctb.modeltools._pscmanipulate.psc_to_str (name)
Takes a filename and returns a path of where this file should be found.

Parameters

name [str] A string containing a filename.
Returns

str A string indicating the path to a psc file.

psctb.modeltools._pscmanipulate.mod_to_str (mod)
Converts an instantiated PySCeS model to a string.

Parameters
mod [PysMod] A Pysces model.
Returns
str A string representation of the contents of a PySCeS model file.

psctb.modeltools._pscmanipulate.strip_fixed (fstr)
Take a psc file string and return two strings: (1) The file header containing the “FIX: ” line and (2) the remainder
of file.

Parameters
fstr [str] String representation of psc file.
Returns
tuple of str 1st element contains file header, second the remainder of the file.

See also:

psc_to_str
mod_to_str
psctb.modeltools._pscmanipulate.augment_f£fix_sting (OrigFix, fix)
Adds a species to a psc file header.
Parameters
OrigFix [str] A psc file header
fix [str] Additional species to add to psc file header.
Returns

str A new psc file header that contains the contents of the original together with the new fixed
species.

psctb.modeltools._pscmanipulate.fix_metabolite (mod, fix, model_name=None)
Fix a metabolite in a model and return a new model with the fixed metabolite.

Parameters
mod [PysMod] The original model.
fix [str] The metabolite to fix.

model_name [str, optional (Default] The file name to use when saving the model (in psc/orca).
If None it defaults to original_model_name_fix.

86 Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

Returns
PysMod A new model instance with an additional fixed species.

psctb.modeltools._pscmanipulate.fix_metabolite_ss (mod, fix, model_name=None)
Fix a metabolite at its steady state in a model and return a new model with the fixed metabolite.

Parameters
mod [PysMod] The original model.
fix [str] The metabolite to fix.

model_name [str, optional (Default] The file name to use when saving the model (in psc/orca).
If None it defaults to original_model_name_fix.

Returns
PysMod A new model instance with an additional fixed species.

See also:

fix metabolite

Module contents

psctb.utils package

Subpackages

psctb.utils.misc package
Submodules
psctb.utils.misc._misc module

psctb.utils.misc._misc.ec_list (mod)
Retuns a list of control coefficients of a model.

The list contains both flux and species control coefficients and control coefficients follow the syntax of
‘cc_controlled_controller’.

Parameters

mod [PysMod] The Pysces model contains the reactions and species which is used to construct
the control coefficient list.

Returns
list of str The cc_list is sorted alphabetically.

See also:
ec _list,rc list,prc list

psctb.utils.misc._misc.ec_list (mod)
Retuns a list of elasticity coefficients of a model.

The list contains both species and parameter elasticity coefficients and elasticity coefficients follow the syntax
of ‘ec_reaction_sp-or-param’.

9.1. psctb package 87

PyscesToolbox Documentation, Release 1.0.0

Parameters

mod [PysMod] The Pysces model contains the reactions, species and parameters which is used
to construct the elasticity coefficient list.

Returns
list of str The ec_list is sorted alphabetically.

See also:
cc _list,rc list,prc list
psctb.utils.misc._misc.prod_ec_list (mod)
Returns a list of product elasticity coefficients of a model.
Returns

list of str The prod_ec_list is sorted alphabetically.

See also:
ec_list,cc _list,rc list,prc _list
psctb.utils.misc._misc.mod_ec_list (mod)
Returns a list of modifier elasticity coefficients of a model.
Returns

list of str The mod_ec_list is sorted alphabetically.

See also:
ec _list,cc list,rc list,prc list
psctb.utils.misc._misc.rc_list (mod)

Retuns a list of response coefficients of a model.

The list contains both species and flux response coefficients and response coefficients follow the syntax of
‘rc_responder_parameter’.

Parameters

mod [PysMod] The Pysces model contains the reactions, species and parameters which is used
to construct the response coefficient list.

Returns
list of str The rc_list is sorted alphabetically.

See also:
cc_list,ec _list,prc _list
psctb.utils.misc._misc.prc_list (mod)

Retuns a list of partial response coefficients of a model.

The list contains both species and flux partial response coefficients and partial response coefficients follow the
syntax of ‘prc_responder_parameter_route’.

Parameters

88 Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

mod [PysMod] The Pysces model contains the reactions, species and parameters which is used
to construct the partial response coefficient list.

Returns
list of str The prc_list is sorted alphabetically.
See also:
cc list,ec list,rc list
psctb.utils.misc._misc.silence_print (func)
A function wrapper that silences the stdout output of a function.
This function is very useful for silencing pysces functions that print a lot of unneeded output.
Parameters
func [function] A function that talks too much.
Returns
function A very quiet function

class psctb.utils.misc._misc.DotDict (*args, **kwargs)
Bases: dict

A class that inherits from dict.

The DotDict class has the same functionality as dict but with the added feature that dictionary elements may
be accessed via dot notation.

See also:

dict

PseudoDotDict

Methods

clear()

copy()
fromkeys(iterable[, value])

Create a new dictionary with keys from iterable and
values set to value.

Return the value for key if key is in the dictionary,
else default.

get(key[, default])

items()

keys()

pop(k[,d]) If key is not found, d is returned if given, otherwise
KeyError is raised

popitem() 2-tuple; but raise KeyError if D is empty.

setdefault(key[, default])

Insert key with a value of default if key is not in the
dictionary.

update([E, 1**F)

If E is present and has a .keys() method, then does:
for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

Continued on next page

9.1. psctb package

89

PyscesToolbox Documentation, Release 1.0.0

Table 2 — continued from previous page

values()

update ([E], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

class psctb.utils.misc._misc.PseudoDotDict (*args, **kwargs)
Bases: object

A class that acts like a dictionary with dot accessible elements.
This class is not subsclassed from dict like DotDict, but rather wraps dictionary functionality.
This object has trouble being pickled :’(

See also:

dict

DotDict

Methods

Cupdate | |

update (dic)

psctb.utils.misc._misc.is_number (suspected_number)
Test if an object is a number

Parameters

suspected_number: object This can be any object which might be a number.
Returns

boolean True if object is a number, else false

psctb.utils.misc._misc.formatter_factory (min_val=None, max_val=None, de-

fault_fmt=None, outlier_fmt=None)
Returns a custom htmi_table object cell content formatter function.

Parameters
min_val [int or float, optional (Default] The minimum value for float display cutoff.
max_val [int of float, optional (Default] The maximum value for float display cutoff.

default_fmt [str, options (Default] The default format for any number within the range of
min_val to max_val.

outlier_fmt [str, optional (Default] The format for any number not in the range of min_val to
max_val

Returns

formatter [function] A function which formats input for html_table using the values set up by
this function.

920 Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

Examples

>>> f = formatter_factory(min_val=1,
max_val=10,
default_fmt='%.2f"',
outlier fmt='%.2e"'")

>>> f (1)

'1.00'

>>> f£(5.235)

'5.24"

>>> f£(10)

'10.00"

>>> £(0.99842)

'9.98e-01"

>>> f('abc'")

'abce!

psctb.utils.misc._misc.html_table (matrix_or_array_like, float_fmt=None, raw=False,

first_row_headers=False, caption=None, style=None,
formatter=None)
Constructs an html compatible table from 2D list, numpy array or sympy matrix.

Parameters

matrix_or_array_like [list of lists or array or matrix] A compatible object to be converted to
an html table

float_fmt [str, optional (Default] The formatter string for numbers. This formatter will be ap-
plied to all numbers. This optional argument is only used when the argument formatter is
None. Useful for simple tables where different types of formatting is not needed.

raw [boolean, optional (Default] If True a raw html string will be returned, otherwise an IPython
HTML object will be returned.

first_row_headers [boolean, optional (Default] If True elements in the fist row in ma-
trix_or_array_like will be considered as part of a header and will get the <th></th> tag,
otherwise there will be no header.

caption [str, optional (Default] An optional caption for the table.
style [str, optional (Default] An optional html table style

formatter: function, optional (Default [None)] An optional formatter function. If none
float_fmt will be used to format numbers.

Returns
str A string containing an html table.
OR
HTML An IPython notebook HTML object.

See also:
formatter. factory

psctb.utils.misc._misc.do_safe_state (mod, parameter, value, type="ss’)
psctb.utils.misc._misc.find_min (array_like)

psctb.utils.misc._misc.find_max (array_like)

9.1. psctb package 91

PyscesToolbox Documentation, Release 1.0.0

psctb.utils.misc._misc.split_coefficient (coefficient_name, mod)
psctb.utils.misc._misc.ec_dict (mod)
psctb.utils.misc._misc.cc_dict (mod)
psctb.utils.misc._misc.re_dict (mod)
psctb.utils.misc._misc.prc_dict (mod)
psctb.utils.misc._misc.group_sort (old_list, num_of_groups)
psctb.utils.misc._misc.extract_model (0bj)
psctb.utils.misc._misc.get_value (expression, subs_dict)
psctb.utils.misc._misc.get_value_eval (expression, subs_dict)
psctb.utils.misc._misc.get_value_sympy (expression, subs_dict)

psctb.utils.misc._misc.print_f£ (message, status)
Prints a message if status is True Parameters - message : object

Any object with a __str__ method.
status : bool

psctb.utils.misc._misc.stringify (symbol_or_list)
Returns a list of strings from a list of sympy.Symbol objects or a string from a sympy.Symbol.

Parameters
symbol_or_list [sympy.Symbol or list of sympy.Symbol.]
Returns

str or list of str A str or list of str representation of the sympy.Symbol or list of sympy.Symbol.

Examples

>>> import sympy

>>> symbol_list = sympy.sympify(['a','c','d"'])
>>> a = stringify (symbol_1list[0])

>>> a

14t

>>> type (a)

<type 'str>'

>>> str_list = stringify(symbol_list)
>>> str_list

['a', 'b', 'c']

>>> type(str_list[0])

<type 'str>'

psctb.utils.misc._misc.is_iterable (0bj)
Returns True if an object is iterable and False if it is not.

This function makes the assumtion that any iterable object can be cast as an iterator using the build-in function

iter. This might not be the case, but works within the context of PySCeSToolbox.
Parameters
obj [object] Any object that might or might not be iterable.

Returns

92 Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

bool A boolean indicating if ob is iterable.

psctb.utils.misc._misc.scanner_range_setup (scan_range)
From a range of numbers, returns its start point, end point, number of points and if it is a log range.

The assumption is made that only log or linear ranges are valid inputs, thus lists of random numbers would
likely be classified as logarithmic.

Parameters

scan_range [iterable] Any iterable object containing a range of numbers. Most probably
numpy.ndarray.

Returns
start [number]| A number indicating the start point of the scan range.
end: number A number indicating the end point of the scan range.
scan_points: number A number indicating the number of scan point in the scan range
is_log_range: bool A boolean indicating whether the scan range has a logarithmic scale or not.

psctb.utils.misc._misc.is_linear (scan_range)
For any 1-demensional data structure containing numbers return True if the numbers follows a linear sequence.

Within the context of PySCeSToolbox this function will be called on either a linear range or a log range. Thus,
while not indicative of log ranges, this is what a False return value indicates in this software.

Parameters

scan_range [iterable] Any iterable object containing a range of numbers.
Returns

bool A boolean indicating if scan_range is a linear sequence of numbers.

psctb.utils.misc._misc.column_multiply (arr)
For any 2d array returns a column vector with the product of the columns of each row.

Parameters
arr [numpy.ndarray]
Returns

numpy.ndarray A ndarray (column vector) with the products of columns of each row of arr as
values

Examples

>>> arr = np.arrange(10) .reshape(5,2)
>>> arr
array ([

’ I4

[0, 1]
(2, 31,
(4, 51,

(6, 71,

(8, 911

>>> column_multiply(arr)
array ([[-1y

’

NN O oy O

]
]
-]
]

~ DN

[
[
[r

[1)

9.1. psctb package 93

PyscesToolbox Documentation, Release 1.0.0

psctb.utils.misc._misc.unix_to_windows_path (path_to_convert, drive_letter="C’)

¢

For a string representing a POSIX compatible path (usually starting with either ‘~’ or ‘/’), returns a string
representing an equivalent Windows compatible path together with a drive letter.

psctb.
psctb.
psctb.
psctb.
psctb.
psctb.
psctb.
psctb.
psctb.
psctb.
psctb.
psctb.
psctb.

psctb.

Parameters

path_to_convert [string] A string representing a POSIX path

drive_letter [string (Default] A single character string representing the desired drive letter

Returns

utils.misc._misc.
utils.

utils.

utils

utils.

utils.

utils

utils

utils.

utils.

utils

utils.
utils.

utils.

string A string representing a Windows compatible path.

.misc._misc

.misc._misc.

.misc._misc.

.misc._misc.

Module contents

misc._misc.

misc._misc.

misc._misc.

misc._misc.

misc._misc.

misc._misc.

misc._misc.
misc._misc.

misc._misc.

flux list (mod)
ss_species_list (mod)

get_filename_from caller ()

.memoize (function)

is_reaction (attr, model)
is_species (attr, model)
is_parameter (arttr, model)
is_variable (attr, model)
is_attr (attr, model)
is_mca_coef (attr, model)
is_ec (attr, model)

is_cc (attr, model)

is_rc (attr, model)

is_prec (attr, model)

psctb.utils.model_graph package

Submodules

psctb.utils.model_graph._model_graph module

class psctb.utils.model_graph._model_graph.ModelGraph (mod, pos_dic=None,

Bases: object

Attr]

ibutes

height
nodes_fixed
straight_links
width

analysis_method=None,
base_name=None)

94

Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

Methods

save([file_name]) Saves the image.

change_link_properties
change_node_properties
draw_all_links

highlight_cc

highlight_cp
remove_dummy_sinks
remove_external_modifier_links
reset_node_properties

show

DUMMY_SINK_NAMES = ['dummy', 'sink']

REACTION_NODE = {'color': 'black', 'dx': -12, 'dy': -15, 'fill': '#00A388"',

'fixed

RGB_RGB_RGB_ = {0: 'rgb(94,79,162)', 1: 'rgb(50,136,189)', 2: 'rgb(102,194,165)', 3

SPECIES_NODE = {'color': 'black', 'dx': -12, 'dy': -15, 'fill': '#FF6138"',

change_link_properties (elas, prop_dic=None, only_overwrite=False)
change_node_properties (node_name, prop_dic=None)

draw_all links ()

height

highlight_cc (cc, show_dummy_sinks=False, show_external_modifier_links=False)
highlight_cp (cp, show_dummy_sinks=False, show_external_modifier_links=False)
nodes_fixed

remove_dummy_sinks ()

remove_external modifier links /()

reset_node_properties ()

save (file_name=None)
Saves the image.

Saves the image to either the default working directory or to an a specified location. Parameters
file_name : str, Optional (default : None)

An optional path to which the image will be saved.

Returns

None

show (no_links=False, clear_top_box=True)
straight_1links
width

9.1.

psctb package 95

'fixed'

PyscesToolbox Documentation, Release 1.0.0

Module contents

psctb.utils.plotting package
Submodules
psctb.utils.plotting._plotting module

class psctb.utils.plotting._plotting.LineData (name, x_data, y_data, categories=None,

properties=None)
Bases: object

An object that contains data and metadata used by ScanFig to draw amatplot1ib line with interactivity.

This object is used to initialise a ScanF ig object together with a Data2D object. Once a ScanF ig instance is
initialised, the LineData objects are saved in a list _raw_1ine_data. Changing any values there will have
no effect on the output of the ScanF ig instance. Actual X,y data, matplot1lib line metadata, and ScanFig
category metadata is stored.

Parameters
name [str] The name of the line. Will be used as a label if none is specified.
x_data [array_like] The x data.
y_data [array_like] The y data.

categories [list, optional] A list of categories that a line falls into. This will be used by ScanFig
to draw buttons that enable/disable the line.

properties [dict, optional] A dictionary of properties of the line to be drawn. This dictionary
will be used by the generic set () function of matplotlib.Lines.Line2D to set the
properties of the line.

See also:

ScanFig
Data2D

RateChar

Methods

add_property(key, value) Adds a property to the properties dictionary of
the LineData object.

add_property (key, value)
Adds a property to the properties dictionary of the LineData object.

The properties dictionary of LineData will be used by the generic set () function of
matplotlib.Lines.Line2D to set the properties of the line.

Parameters
key [str] The name of the matplotlib.Lines.Line2D property to be set.

value [sting, int, bool] The value of the property to be set. The type depends on the property.

96 Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

class psctb.utils.plotting._plotting.ScanFig (line_data_list, category_classes=None,

fig_properties=None, ax_properties=None,
base_name=None, working_dir=None)

Bases: object

Uses data in the form of a list of LineData objects to display interactive plots.

Interactive plots can be customised in terms of which data is visible at any one time by simply clicking a button
to toggle a line. Matplotlib figures are used internally, therefore ScanFig figures can be altered by changing the
properties of the internal figure.

Parameters

See also:

line_data_list [list of LineData objects] A LineData object contains the information needed to
draw a single curve on a matplotlib figure. Here a list of these objects are used to populate
the internal matplotlib figure with the various curves that represent the results of a parameter
scan or simulation.

category_classes [dict, Optional (Default] Each line on a ScanFig plot falls into a different
category. Each of these categories in turn fall into a different class. Each category represents
a button which toggles the lines which fall into the category while the button is arranged
under a label which is represented by a category class. Each key in this dict is a category
class and the value is a list of categories that fall into this class. If None all categories will
fall into the same class.

fig_properties [dict, Optional (Default] A dictionary of properties that will be used to adjust
the appearance of the figure. These properties should compatible with matplotlib.
figure.Figure'' object in a way that its ° set method canbe used to
change its properties. If None, default matplotlib figure properties will be used.

ax_properties [dict, Optional (Default] A dictionary of properties that will be used to adjust the
appearance of plot axes. These properties should compatible with matplotlib.axes.
AxesSubplot'' object in a way that its ' set method can be used to
change its properties. If None default matplotlib axes properties will be used.

base_name [str, Optional (Default] Base name that will be used when an image is saved by
ScanFig. If None, then scan_fig will be used.

working_dir [str, Optional (Default] The directory in which files figures will be saved. If None,
then it will default to the directory specified in pysces.output_dir.

LineData

Data2D

Attributes

categories_status
category_names

line_names

Methods

9.1. psctb package

97

PyscesToolbox Documentation, Release 1.0.0

adjust_rfigure() Provides widgets to set the limits and scale
(log/linear) of the figure.

interact() Displays the figure in a IPython/Jupyter notebook to-
gether with buttons to toggle the visibility of certain
lines.

save([file_name, dpi, fmt, include_legend]) Saves the figure in it’s current configuration.

show() Displays the figure.

toggle category(cat, value) Changes the visibility of all the lines in a certain line
category.

toggle_1line(name, value) Changes the visibility of a certain line.

adjust_figure ()
Provides widgets to set the limits and scale (log/linear) of the figure.

As with interact, the plot is displayed in the notebook. Here no widgets are provided the change the
visibility of the data displayed on the plot, rather controls to set the limits and scale are provided.

See also:

show

interact

categories_status
category names

interact ()
Displays the figure in a IPython/Jupyter notebook together with buttons to toggle the visibility of certain
lines.

See also:

show

adjust_figure

line_names

save (file_name=None, dpi=None, fmt=None, include_legend=True)
Saves the figure in it’s current configuration.

Parameters

file_name [str, Optional (Default] The file name to be used. If None is provided the file will
be saved to working_dir/base_name.fmt

dpi [int, Optional (Default] The dpi to use. Defaults to 180.

fmt [str, Optional (Default] The image format to use. Defaults to svg. If file_name
contains a valid extension it will supersede fmt.

show ()
Displays the figure.

Depending on the matplotlib backend this function will either display the figure inline if running in an
IPython notebook with the ——pylab=inline switch or with the %matplotlib inline IPython line
magic, alternately it will display the figure as determined by the rcParams ['backend'] option of
matplotlib. Either the inline or nbAgg backends are recommended.

98 Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

See also:

interact
adjust_figure
toggle_category (cat, value)
Changes the visibility of all the lines in a certain line category.
When used all lines in the provided category’s visibility is changed according to the value provided.
Parameters
cat: str The name of the category to change.
value: bool The visibility status to change the lines to (True for visible, False for invisible).
See also:
toggle line
toggle_1line (name, value)
Changes the visibility of a certain line.
When used a specific line’s visibility is changed according to the value provided.
Parameters
name: str The name of the line to change.
value: bool The visibility status to change the line to (True for visible, False for invisible).

See also:
toggle category

class psctb.utils.plotting._plotting.Data2D (mod, column_names, data_array,
ltxe=None, analysis_method=None,
ax_properties=None, file_name=None,
additional_cat_classes=None, addi-
tional_cats=None, num_of_groups=None,
working_dir=None, cate-

gory_manifest=None, axvline=True)
Bases: object

An object that wraps results from a PySCeS parameter scan.

Results from parameter scan or timecourse are used to initialise this object which in turn is used to create a
ScanF1ig object. Here results can easily be accessed and saved to disk.

The Data2D is also responsible for setting up a ScanF ig object from analysis results and therefore contains
optional parameters for setting up this object.

Parameters
mod [PysMod] The model for which the parameter scan was performed.

column_names ([list of str] The names of each column in the data_array. Columns should be
arranged with the input values (scan_in, time) in the first column and the output values
(scan_out) in the columns that follow.

data_array [ndarray] An array containing results from a parameter scan or tome simulation.
Arranged as described above.

9.1. psctb package 99

PyscesToolbox Documentation, Release 1.0.0

Itxe [LatexExpr, optional (Default] A LatexExpr object that is used to convert PySCeS com-
patible expressions to LaTeX math. If None is supplied a new LatexExpr object will be
instantiated. Sharing a single instance saves memory.

analysis_method [str, Optional (Default] A string that indicates the name of the analysis
method used to generate the results that populate Data2D. This will determine where re-
sults are saved by Data2D as well as any ScanF ig objects that are produced by it.

ax_properties [dict, Optional (Default] A dictionary of properties that will be used by
ScanFig to adjust the appearance of plots. These properties should compati-
ble with matplotlib.axes.AxesSubplot'' object in a way that its
* " set method can be used to change its properties. If none, a default ScanFig object
is produced by the plot method.

file_name [str, Optional (Default] The name that should be prepended to files produced any
ScanF1ig objects produced by Data2D. If None, defaults to ‘scan_fig’.

additional_cat_classes [dict, Optional (Default] A dictionary containing additional line class
categories for ScanFig construction. Each data_array column contains results repre-
senting a specific category of result (elasticity, flux, concentration) which in turn fall into a
larger class of data types (All Coefficients). This dictionary defines which line classes fall
into which class category. (k = category class; v = line categories)

additional_cats [dict, Optional (Default] A dictionary that defines additional result categories
as well as the lines that fall into these categories. (k = line category, v = lines in category).

num_of_groups [int, Optional (Default] A number that defines the number of groups of lines.
Used to ensure that the lines that are closely related (e.g. elasticities for one reaction) have
colors assigned to them that are easily differentiable.

working_dir [str, Optional (Default] This string sets the working directory directly and if pro-
vided supersedes analysis_method.

See also:
ScanFig
Data2D
RateChar
Methods
plot() Creates a ScanFig object using the data stored in
the current instance of Data2D
save_results([file_name, separator, fmt]) Saves data stores in current instance of Data2D as a
comma separated file.
plot ()

Creates a ScanFig object using the data stored in the current instance of Data2D
Returns
ScanFig A ScanFig‘ object that is used to visualise results.

save_results (file_name=None, separator=", ", fmt="%f")
Saves data stores in current instance of Data2D as a comma separated file.

Parameters

100 Chapter 9. Module reference

PyscesToolbox Documentation, Release 1.0.0

file_name [str, Optional (Default] The file name, extension and path under which data
should be saved. If None the name will default to scan_data.csv and will be saved ei-
ther under the directory specified under the directory specified in folder.

separator [str, Optional (Default] The symbol which should be used to separate values in
the output file.

format [str, Optional (Default] Format for the data.

psctb.utils.plotting._plotting.load_data2d (file_name, mod=None, ltxe=None)
Loads a gzipped cPickle file containing a Data2D object. Optionally a model can be provided (which is useful
when loading data that reference the same model. For the same reason a LatexExpr object can be supplied.

psctb.utils.plotting._plotting.save_data2d (data_2dobj, file_name)
Saves a Data2D object to a gzipped cPickle to a specified file name.

class psctb.utils.plotting._plotting.SimpleData2D (column_names, data_array,

mod=None)
Bases: object

Methods
plot() Creates a ScanFig object using the data stored in
the current instance of Data2D
save_results([file_name, separator, fmt]) Saves data stores in current instance of Data2D as a
comma separated file.
plot ()

Creates a ScanF ig object using the data stored in the current instance of Data2D
Returns
ScanFig A ScanFig‘ object that is used to visualise results.

save_results (file_name=None, separator=", ’, fmt="%f")
Saves data stores in current instance of Data2D as a comma separated file.

Parameters

file_name [str, Optional (Default] The file name, extension and path under which data
should be saved. If None the name will default to scan_data.csv and will be saved ei-
ther under the directory specified under the directory specified in folder.

separator [str, Optional (Default] The symbol which should be used to separate values in
the output file.

fmt [str, Optional (Default] Format for the data.

Module contents
Submodules
psctb.utils.config module

class psctb.utils.config.ConfigChecker
Bases: object

9.1. psctb package 101

PyscesToolbox Documentation, Release 1.0.0

Methods

check_config
warn_user

static check_config (config_name, config_path, config_dict)
static warn_user (exception, solution)

class psctb.utils.config.ConfigReader
Bases: object

Methods

get_config
reload_config

classmethod get_config()
classmethod reload config()

class psctb.utils.config.ConfigWriter
Bases: object

Methods

| write_config | |

static write_config (config_dict, config_path)

exception psctb.utils.config.MissingSection
Bases: Exception

exception psctb.utils.config.MissingSetting
Bases: Exception

class psctb.utils.config.PathFinder
Bases: object

Methods

find_match
find_path_to
which

static f£ind match (base_dir, to_match)
static find_path_to (wildcard_path)

static which (program)

102 Chapter 9

. Module reference

PyscesToolbox Documentation, Release 1.0.0

Module contents

9.1.2 Module contents

9.1. psctb package 103

PyscesToolbox Documentation, Release 1.0.0

104 Chapter 9. Module reference

cHAaPTER 10

Indices and tables

* genindex
* modindex

e search

105

PyscesToolbox Documentation, Release 1.0.0

106 Chapter 10. Indices and tables

Python Module Index

P

psctb,
psctb.
.analyse._ratechar, 77
psctb.
psctb.
psctb.
psctb.
psctb.
psctb.
psctb.
psctb.
.modeltools, 87

psctb

psctb

psctb.
psctb.
psctb.
psctb.
psctb.
psctb.
psctb.
psctb.

psctb.
psctb.

103

analyse, 83

analyse._symca, 77
analyse._symca._symca, 71
analyse._symca.ccobjects, 73
analyse._symca.symca_toolbox, 74
analyse._thermokin, 78
analyse._thermokin_file_tools, 78
latextools, 84
latextools._expressions, 83

modeltools._paths, 84
modeltools._pscmanipulate, 86

utils,
utils.
utils
utils
utils
utils
94
utils.
utils

103
config, 101

.misc, 94

.misc._misc, 87
.model_graph, 96
.model_graph._model_graph,

plotting, 101

.plotting._plotting, 96

107

PyscesToolbox Documentation, Release 1.0.0

108 Python Module Index

Index

A change_link_properties ()
abs_value (psctb.analyse._symca.ccobjects.CCoef at- (psctb.utils.model_graph._model_graph.ModelGraph
tribute), 74 method), 95 |
add_property () (pscth.utils.plotting._plotting. LineDatgchange_node_properties ()
method), 96 (psctb.utils.model_graph._model_graph.ModelGraph
add_term_types () (psctb.latextools._expressions.LatexExpr method), 95
method), 84 check_config () (psctb.utils.config.ConfigChecker
adjugate_matrix () static method), 102
(psctb.analyse._symca.symca_toolbox.SymcaTool B&¥eCk—for_negatives () (in module
static method), 75 psctb.analyse._thermokin_file_tools), 78
adjust_figure () (psctb.utils.plotting._plotting.ScanFigheck_term_format () (in module
method), 98 psctb.analyse._thermokin_file_tools), 78
augment_fix_sting/() (in module column_multi.ply.() . (in module
psctb.modeltools._pscmanipulate), 86 psctb.utils.misc._misc), 93
ConfigChecker (class in psctb.utils.config), 101
B ConfigReader (class in psctb.utils.config), 102
build _cc matrix () ConfigWriter (class in psctb.utils.config), 102
(psctb.analyse._symca.symca_toolbox. SymcaToolI?o%cn struct_dict () (in module

psctb.analyse._thermokin_file_tools), 79

static method), 76
) CPattern (class in psctb.analyse._symca.ccobjects), 74

build_inner_dict ()

(psctb.analyse._symca.symca_toolbox. SymcaTool§0rxeate_gamma_keq_reqn_c‘iata O Gn_ module
static method), 76 psctb.analyse._thermokin_file_tools), 79
’ create_reqn_data () (in module

build_outer_dict ()
(psctb.analyse._symca.symca_toolbox.SymcaToolBox
static method), 76 D

psctb.analyse._thermokin_file_tools), 79

C Data2D (class in psctb.utils.plotting._plotting), 99

det_bareis () (psctb.analyse._symca.symca_toolbox.SymcaToolBox
. . . . static method), 76

(psctb.utils.plotting. _plotting.ScanFig ar- do_par_scan () (pscthb.analyse._symca.ccobjects.CCoef

tribute), 98
t th.utils.plotti lotting.ScanFi method), 74
ca egor;;?bil:ee)sg(gsc WUILLS. plotiing. _proting.ocantity do_ratechar () (psctb.analyse._ratechar.RateChar

categories_status

) method), 78
cc_dict () (in module psctb.utils.misc._misc), 92

] do_safe_state () (in module psctb.utils.misc._misc),
cc_list () (in module psctb.utils.misc._misc), 87 01
CCBase (class. in psctb.analyse._symca. cco{ajects), 73 do_symea () (psctb.analyse._symea._symea.Symca
CCoef (class in psctb.analyse._symca.ccobjects), 73 method), 72

cctype () (in module psctb.analyse._symca.ccobjects),

7 DotDict (class in psctb.utils.misc._misc), 89

draw_all_links () (psctb.utils.model_graph._model_graph.ModelGra
method), 95

109

PyscesToolbox Documentation, Release 1.0.0

DUMMY__SINK_NAMES (psctb.utils.model_graph._model_grwh. MadetGruph (psctb.utils.config. ConfigReader class

attribute), 95

E

ec_dict () (in module psctb.utils.misc._misc), 92
ec_list () (in module psctb.utils.misc._misc), 87

ematrix (psctb.analyse._symca._symca.Symca at-
tribute), 72

es_matrix (psctb.analyse._symca._symca.Symca at-
tribute), 72

esL (psctb.analyse._symca._symca.Symca attribute), 72

expression_to_latex()
(psctb.latextools._expressions.LatexExpr
method), 84

extract_model () (in module psctb.utils.misc._misc),
92

F

filter irreversible() (in module
psctb.analyse._thermokin_file_tools), 79

find_match () (psctb.utils.config.PathFinder static
method), 102

find_max () (in module psctb.utils.misc._misc), 91

find_min () (in module psctb.utils.misc._misc), 91

find_path_to () (psctb.utils.config.PathFinder static
method), 102

fix_expressions ()

(psctb.analyse._symca.symca_toolbox.SymcaToolBox

static method), 76

fix_metabolite () (in module
psctb.modeltools._pscmanipulate), 86
fix_metabolite_ss () (in module

psctb.modeltools._pscmanipulate), 87
flux_list () (in module psctb.utils.misc._misc), 94
fluxes (psctb.analyse._symca._symca.Symca at-

tribute), 72

method), 102

get_es_matrix () (psctb.analyse._symca.symca_toolbox.SymcaToolBo.

static method), 76

get_es_matrix_no_mca ()
(psctb.analyse._symca.symca_toolbox.SymcaToolBox
static method), 76

get_file_path() (in module
psctb.modeltools._paths), 85
get_filename_from_caller () (in module

psctb.utils.misc._misc), 94

get_fix_denom () (psctb.analyse._symca.symca_toolbox.SymcaToolBo.

static method), 76

get_fix_denom_jannie ()
(psctb.analyse._symca.symca_toolbox.SymcaToolBox
method), 76

get_fluxes_vector ()
(psctb.analyse._symca.symca_toolbox.SymcaToolBox
static method), 76

get_fmt () (in module psctb.modeltools._paths), 85

get_gamma_keqg_terms () (in module
psctb.analyse._thermokin_file_tools), 79

get_ma_terms () (in module
psctb.analyse._thermokin_file_tools), 79

get_model_name () (in module
psctb.modeltools._paths), 84

get_nmatrix () (pscthb.analyse._symca.symca_toolbox.SymcaToolBox

static method), 76

get_num_ind_fluxes ()
(psctb.analyse._symca.symca_toolbox.SymcaToolBox
static method), 76

get_num_ind_species ()
(psctb.analyse._symca.symca_toolbox.SymcaToolBox
static method), 77

get_reqn_path () (in module

psctb.analyse._thermokin_file_tools), 80

fluxes_dependent (psctb.analyse._symca._symca.Syméet _species_vector ()

attribute), 72
fluxes_independent
(psctb.analyse._symca._symca.Symca at-
tribute), 72
FormatException, 78
formatter_factory ()
psctb.utils.misc._misc), 90

(in module

G

generic_populate ()

(psctb.analyse._symca.symca_toolbox. SymcaToolﬁo%ct—

static method), 76

get_all_terms () (in module
psctb.analyse._thermokin_file_tools), 79
get_binding_vc_terms () (in module

psctb.analyse._thermokin_file_tools), 79

(psctb.analyse._symca.symca_toolbox.SymcaToolBox
static method), 77

get_st_pt_keqg() (in module
psctb.analyse._thermokin_file_tools), 80
get_state () (in module
psctb.analyse._symca.ccobjects), T4
get_str_formulas () (in module
psctb.analyse._thermokin_file_tools), 80
get_subs_dict () (in module

psctb.analyse._thermokin_file_tools), 81
sympy_formulas () (in module
psctb.analyse._thermokin_file_tools), 81

get_sympy_terms () (in module
psctb.analyse._thermokin_file_tools), 81
get_term_dict () (in module

psctb.analyse._thermokin_file_tools), 81
get_term_types_from_raw_data () (in module

110

Index

PyscesToolbox Documentation, Release 1.0.0

psctb.analyse._thermokin_file_tools), 82
get_terms () (in module

psctb.analyse._thermokin_file_tools), 82
get_value () (in module psctb.utils.misc._misc), 92

get_value_eval () (in module
psctb.utils.misc._misc), 92
get_value_sympy () (in module

psctb.utils.misc._misc), 92
group_sort () (in module psctb.utils.misc._misc), 92

Fi

height (psctb.utils.model_graph._model_graph.ModelGraph

attribute), 95

latex_expression_full
(psctb.analyse._symca.ccobjects.CCoef
tribute), 74

latex_expression_full
(psctb.analyse._symca.ccobjects. CPattern
attribute), 74

latex_name (psctb.analyse._symca.ccobjects.CCBase
attribute), 73

latex_name (psctb.analyse._symca.ccobjects.CCoef
attribute), 74

latex_name (psctb.analyse._symca.ccobjects.CPattern

attribute), 74

latex_numerator (psctb.analyse._symca.ccobjects.CCoef

at-

highlight_cc () (psctb.utils.model_graph._model_graph.ModelGHipibute), 14

method), 95

latex_numerator (psctb.analyse._symca.ccobjects.CPattern

highlight_cp () (psctb.utils.model_graph._model_graph.ModelG#tipibute), 74

method), 95

highlight_patterns/()
(psctb.analyse._symca.ccobjects.CCoef
method), 74

html_table () (in module psctb.utils.misc._misc), 91

interact () (psctb.utils.plotting. _plotting.ScanFig
method), 98

invert () (psctb.analyse._symca.symca_toolbox.SymcaToolBox

static method), 77
is_attr () (in module psctb.utils.misc._misc), 94
is_cc () (in module psctb.utils.misc._misc), 94
is_ec () (in module psctb.utils.misc._misc), 94
is_iterable () (in module psctb.utils.misc._misc), 92
is_linear () (in module psctb.utils.misc._misc), 93
is_mca_coef () (in module psctb.utils.misc._misc), 94
is_number () (in module psctb.utils.misc._misc), 90
is_parameter () (in module psctb.utils.misc._misc),
94
is_prc () (in module psctb.utils.misc._misc), 94
is_rc () (in module psctb.utils.misc._misc), 94
is_reaction () (in module psctb.utils.misc._misc), 94
is_species () (in module psctb.utils.misc._misc), 94
is_variable () (in module psctb.utils.misc._misc), 94

K

kmatrix (psctb.analyse._symca._symca.Symca
tribute), 72

at-

L

latex_expression (psctb.analyse._symca.ccobjects.C C[:%zge

attribute), 73

latex_expression (psctb.analyse._symca.ccobjects.CCoef

attribute), 74

LatexExpr (class in psctb.latextools._expressions), 83

line_names (psctb.utils.plotting._plotting.ScanFig at-
tribute), 98

LineData (class in psctb.utils.plotting. _plotting), 96

lmatrix (psctb.analyse._symca._symca.Symca at-
tribute), 72
load_data2d () (in module

psctb.utils.plotting._plotting), 101
load_session () (psctb.analyse._ratechar.RateChar
method), 78
load_session () (psctb.analyse._symca._symca.Symca

method), 72

M

make_CC_dot_dict ()
(psctb.analyse._symca.symca_toolbox.SymcaToolBox
static method), 77

make_inner_dict ()
(psctb.analyse._symca.symca_toolbox.SymcaToolBox
static method), 77

make_internals_dict ()
(psctb.analyse._symca.symca_toolbox.SymcaToolBox
static method), 77

make_path () (in module psctb.modeltools._paths), 84

maxima_factor () (psctb.analyse._symca.symca_toolbox.SymcaToolBo.
static method), 77

memoize () (in module psctb.utils.misc._misc), 94

MissingSection, 102

MissingSetting, 102

mod_ec_list () (in module psctb.utils.misc._misc), 88

mod_to_str() (in module
psctb.modeltools._pscmanipulate), 86
elGraph (class in
psctb.utils.model_graph._model_graph),

94

latex_expression (pscth.analyse._symca.ccobjects. CHyjtern

attribute), 74

next_suffix () (in module psctb.modeltools._paths),

Index

111

PyscesToolbox Documentation, Release 1.0.0

85
nmatrix (psctb.analyse._symca._symca.Symca at-
tribute), 73

nodes_fixed (psctb.utils.model_graph._model_graph.MedelGimpht i1s

attribute), 95

num_ind_fluxes (pscth.analyse._symca._symca.Symca psctb.

attribute), 73

num_ind_species (psctb.analyse._symca._symca.Symcasctb.

attribute), 73

P

path_to () (psctb.analyse._symca._symca.Symca
method), 73

PathFinder (class in psctb.utils.config), 102

percentage (psctb.analyse._symca.ccobjects. CPattern
attribute), 74

plot () (psctb.utils.plotting._plotting. Data2D method),

100

(psctb.utils.plotting. _plotting.SimpleData2D
method), 101
populate_with_fake_elasticities ()

plot ()

(psctb.analyse._symca.symca_toolbox.SymcaToolBox

static method), 77
populate_with_fake_fluxes /()

psctb.modeltools._pscmanipulate (module),
86

psctb.utils (module), 103

.config (module), 101

.misc (module), 94

.misc._misc (module), 87

.utils.model_graph (module), 96

utils.model_graph._model_graph
(module), 94

utils.plotting (module), 101

utils.plotting._plotting
96

PseudoDotDict (class in psctb.utils.misc._misc), 90

R

RateChar (class in psctb.analyse._ratechar), 77

rc_dict () (in module psctb.utils.misc._misc), 92

rc_list () (in module psctb.utils.misc._misc), 88

REACTION_NODE (psctb.utils.model_graph._model_graph.ModelGraph
attribute), 95

read_reqn_file () (in module

psctb.analyse._thermokin_file_tools), 82

reload_config () (psctb.utils.config. ConfigReader
class method), 102

psctb.utils
utils

psctb

psctb.

psctb. (module),

(psctb.analyse._symca.symca_toolbox.SymcaToolBemove_dummy_sinks ()

static method), 77
populate_with_fake_ss_concentrations()

(psctb.utils.model_graph._model_graph.ModelGraph
method), 95

(psctb.analyse._symca.symca_toolbox.SymcaToolBemove_external_modifier_links ()

static method), 77

prc_dict () (in module psctb.utils.misc._misc), 92

prc_list () (in module psctb.utils.misc._misc), 88

prc_subs (psctb.latextools._expressions.LatexExpr at-
tribute), 84

print_f£ () (in module psctb.utils.misc._misc), 92

prod_ec_1list () (in module psctb.utils.misc._misc),
88

psc_to_str () (in module
psctb.modeltools._pscmanipulate), 86

psctb (module), 103

(psctb.utils.model_graph._model_graph.ModelGraph
method), 95

replace_pow () (in module
psctb.analyse._thermokin_file_tools), 82

reset_node_properties ()
(psctb.utils.model_graph._model_graph.ModelGraph
method), 95

RGB_RGB_RGB__ (psctb.utils.model_graph._model_graph.ModelGraph
attribute), 95

S

psctb.analyse (module), &3 save () (psctb.utils.model_graph._model_graph.ModelGraph
psctb.analyse._ratechar (module), 77 method), 95
psctb.analyse._symca (module), 77 save () (psctb.utils.plotting._plotting.ScanFig method),
psctb.analyse._symca._symca (module), 71 08
psctb.analyse._symca.ccobjects (module), save data2d() (in module
73 psctb.utils.plotting._plotting), 101
psctb.analyse._symca.symca_toolbox (mod- save_results () (psctb.analyse._ratechar.RateChar
ule), 74 method), 78
psctb.analyse._thermokin (module), 78 save_results () (pscth.analyse._symca._symca.Symca
psctb.analyse._thermokin_file_tools method), 73
(module), 78 save_results () (psctb.analyse._thermokin. ThermoKin
psctb.latextools (module), 84 method), 78
psctb.latextools._expressions (module), 83 saye_results () (psctb.utils.plotting. _plotting. Data2D
psctb.modeltools (module), 87 method), 100
psctb.modeltools._paths (module), 84
112 Index

PyscesToolbox Documentation, Release 1.0.0

save_results () (psctb.utils.plotting._plotting.SimpleData2 D

method), 101
save_session ()
method), 78

save_session () (pscth.analyse._symca._symca.Symca subs_dict

method), 73

scale_matrix () (psctb.analyse._symca.symca_toolbox.SymenToolBog s

static method), 77

scaled_k (psctb.analyse._symca._symca.Symca
attribute), 73

scaled_kO (psctb.analyse._symca._symca.Symca at-
tribute), 73

scaled_1 (psctb.analyse._symca._symca.Symca
attribute), 73

scaled_10 (psctb.analyse._symca._symca.Symca at-
tribute), 73

ScanFig (class in psctb.utils.plotting._plotting), 96

scanner_range_setup () (in module
psctb.utils.misc._misc), 93

(psctb.analyse._ratechar.RateChar

attribute), 95

stringify () (in module psctb.utils.misc._misc), 92

strip_fixed() (in module
psctb.modeltools._pscmanipulate), 86

(psctb.latextools._expressions.LatexExpr

attribute), 84

(psctb.analyse._symca._symca.Symca
attribute), 73

substitute_fluxes ()

(psctb.analyse._symca.symca_toolbox.SymcaToolBox

static method), 77
Symca (class in psctb.analyse._symca._symca), 71
SymcaToolBox (class in
psctb.analyse._symca.symca_toolbox), 74

T

term_to_file () (in module
psctb.analyse._thermokin_file_tools), 83
ThermoKin (class in psctb.analyse._thermokin), 78

show () (psctb.utils.model_graph._model_graph.ModelGrapl_subs (psctb.latextools._expressions.LatexExpr at-

method), 95 tribute), 84
show () (psctb.utils.plotting._plotting.ScanFig method), +toggle_category ()

98 (psctb.utils.plotting. _plotting.ScanFig method),
silence_print () (in module psctb.utils.misc._misc), 99

89 toggle_line () (psctb.utils.plotting._plotting.ScanFig
SimpleData2D (class in psctb.utils.plotting._plotting), method), 99

101
simplify_matrix() U

(psctb.analyse._symca.symca_toolbox.SymcaToolBgx, o« o i ndows path () (in module

static method), 77

psctb.utils.misc._misc), 93

solve_dep () (psctb.analyse._symca.symeca_toolbox.Sy mﬁf&‘ig‘?é’ ¥) (psctb.utils.misc._misc.DotDict method), 90

static method), 77
sort_terms () (in module
psctb.analyse._thermokin_file_tools), 82
spawn_cc_objects ()

(psctb.analyse._symca.symca_toolbox. SymcaTool%ogc

static method), 77

species (psctb.analyse._symca._symca.Symca at-
tribute), 73

species_dependent
(psctb.analyse._symca._symca.Symca at-
tribute), 73

species_independent
(psctb.analyse._symca._symca.Symca at-
tribute), 73

update () (psctb.utils.misc._misc.PseudoDotDict
method), 90

V

lue (psctb.analyse._symca.ccobjects. CCBase at-

tribute), 73

W

warn_user () (psctb.utils.config.ConfigChecker static

method), 102
which () (psctb.utils.config.PathFinder static method),
102

width (psctb.utils.model_graph._model_graph.ModelGraph

SPECIES_NODE (psctb.utils.model_graph._model _graph.ModelGral%trib ute), 95

attribute), 95

split_coefficient () (in module
psctb.utils.misc._misc), 91
ss_species_list () (in module

psctb.utils.misc._misc), 94
st_pt_keq from_expression () (in module
psctb.analyse._thermokin_file_tools), 83

write_config() (psctb.utils.config. ConfigWriter
static method), 102

write_reqgn_file () (in module
psctb.analyse._thermokin_file_tools), 83

straight_1links (psctb.utils.model_graph._model_graph.ModelGraph

Index

113

	Introduction
	Installation
	Abbreviated requirements
	Installation on Anaconda
	Virtual environments
	Enabling widgets

	Alternative: direct pip-based install
	Virtual environments
	Enabling widgets

	Maxima
	Windows
	macOS (Mac OS X)
	Linux

	Basic Usage
	Starting a PySCeSToolbox session
	Downloading interactive Jupyter notebooks
	Syntax
	Saving and Default Directories
	Plotting and Displaying Results
	Data2D
	ScanFig
	Tables

	Graphic Representation of Metabolic Networks
	Features
	Usage Example

	RateChar
	Features
	Usage and Feature Walkthrough
	Workflow
	Object Instantiation
	Parameter Scan
	Accessing Results
	Plotting Results
	Saving

	Symca
	Features
	Usage and feature walkthrough
	Workflow
	Object instantiation
	Generating symbolic control coefficient expressions
	Accessing control coefficient expressions
	Dynamic value updating
	Control pattern graphs
	Parameter scans
	Fixed internal metabolites
	Saving results
	Saving/loading sessions

	Thermokin
	Features
	Usage and feature walkthrough
	Workflow
	Rate term file syntax
	Object instantiation
	Accessing results
	Dynamic value updating
	Parameter scans
	Saving results

	Included Files
	Models
	example_model.psc
	lin4_fb.psc

	Example Notebooks

	References
	Module reference
	psctb package
	Subpackages
	Module contents

	Indices and tables
	Python Module Index
	Index

